Re: Re: A question about algebraic numbers using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg62812] Re: [mg62799] Re: [mg62762] A question about algebraic numbers using Mathematica
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Tue, 6 Dec 2005 00:03:08 -0500 (EST)
- References: <200512050837.DAA08323@smc.vnet.net> <200512051841.NAA21128@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Daniel Lichtblau wrote: > Kent Holing wrote: > >>I want to find the inverse of 2 - r in Q[r] where r is a root of the equation >>x^4 - 2c x^3 + (c^2 - 2a^2) x^2 + 2a^2 c x - a^2 c^2 = 0 for a, b and c integers. >> >>Can this be done for general a, b and c? (I know how to do it for specific given numerical values of a, b and c.) >> >>Kent Holing > > > > <<Algebra`PolynomialPowerMod` > > InputForm[PolynomialPowerMod[2 - x, -1, x, > {x^4 - 2*c*x^3 + (c^2-2*a^2)*x^2 + 2*a^2*c*x - a^2*c^2, 0}]] > > Out[5]//InputForm= > PolynomialPowerMod[2 - x, -1, x, > {-(a^2*c^2) + 2*a^2*c*x + (-2*a^2 + c^2)*x^2 - 2*c*x^3 + x^4, 0}] > > > Daniel Lichtblau > Wolfram Research Let me try that again. In[7]:= InputForm[inv = PolynomialPowerMod[2 - x, -1, x, {x^4 - 2*c*x^3 + (c^2-2*a^2)*x^2 + 2*a^2*c*x - a^2*c^2, 0}]] Out[7]//InputForm= (-8 + 4*a^2 + 8*c - 2*a^2*c - 2*c^2 - 4*x + 2*a^2*x + 4*c*x - c^2*x - 2*x^2 + 2*c*x^2 - x^3)/ (-16 + 8*a^2 + 16*c - 4*a^2*c - 4*c^2 + a^2*c^2) Let's check the result this time. In[9]:= PolynomialMod[inv*(2-x), x^4 - 2*c*x^3 + (c^2-2*a^2)*x^2 + 2*a^2*c*x - a^2*c^2] Out[9]= 1 Daniel Lichtblau Wolfram Research
- References:
- A question about algebraic numbers using Mathematica
- From: Kent Holing <KHO@statoil.com>
- Re: A question about algebraic numbers using Mathematica
- From: Daniel Lichtblau <danl@wolfram.com>
- A question about algebraic numbers using Mathematica