       Re: Solutions of an equation under complex form

• To: mathgroup at smc.vnet.net
• Subject: [mg54549] Re: Solutions of an equation under complex form
• Date: Tue, 22 Feb 2005 04:25:38 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```On 2/21/05 at 3:44 AM, mmonerau at gmail.com (MichaÃ«l Monerau) wrote:

>I just want the solutions of the equation :

>x^2 + x + 1 == 0

>under their complex form.

>So, I type :

>Solve [x^2 + x + 1 == 0, x]

>But I unfortunately get :
<{ { {x -> -(-1)^(1/3) }, { x ->(-1)^(2/3) } } }

>And I'd prefer to obtain the more "readable" form : -1/2 +
>I*1/2*Sqrt, -1/2 - I*1/2*Sqrt

>that I would get under another system for instance. What special
>function should I call to get this form under Mathematica ?

Use ComplexExpand, i.e.,

In:=
Solve[x^2 + x + 1 == 0, x]
Out=
{{x -> -(-1)^(1/3)}, {x -> (-1)^(2/3)}}

In:=
(ComplexExpand[x /. #1] & ) /@ %
Out=
{-(1/2) - (I*Sqrt)/2,  -(1/2) + (I*Sqrt)/2}

And if you have the defualt output set to TraditionalForm, this is even more readable
--
To reply via email subtract one hundred and four

```

• Prev by Date: Re: Solutions of an equation under complex form
• Next by Date: Re: problems plotting a derivative
• Previous by thread: Re: Solutions of an equation under complex form
• Next by thread: Re: Solutions of an equation under complex form