       Re: Re: nonlinear differential equation

• To: mathgroup at smc.vnet.net
• Subject: [mg54699] Re: [mg54647] Re: nonlinear differential equation
• From: DrBob <drbob at bigfoot.com>
• Date: Sun, 27 Feb 2005 01:29:34 -0500 (EST)
• References: <cvhequ\$qft\$1@smc.vnet.net> <200502250618.BAA02402@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```Yikes!!! Good luck inverting the functions involved.

Off[Solve::verif, Solve::tdep]
deqn = Derivative[s][t] -
a*s[t]^2 - b*s[t] - c == 0;
ddeqn =
((Integrate[#1, t] & ) /@
Expand[Derivative[s][t]*
#1] & ) /@ deqn
s /. DSolve[{%}, s, t]
(-c)*s[t] - (1/2)*b*s[t]^2 -
(1/3)*a*s[t]^3 +
(1/2)*Derivative[s][t]^
2 == 0

{Function[{t}, InverseFunction[
(I*EllipticF[I*ArcSinh[
(2*Sqrt*Sqrt[
c/(3*b + Sqrt[9*b^2 -
48*a*c])])/Sqrt[#1]],
-((3*b + Sqrt[9*b^2 -
48*a*c])/(-3*b +
Sqrt[9*b^2 - 48*a*
c]))]*Sqrt[
1 - (12*c)/((-3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*Sqrt[
1 + (12*c)/((3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*#1)/(Sqrt*
Sqrt[c/(3*b + Sqrt[
9*b^2 - 48*a*c])]*
Sqrt[6*c + 3*b*#1 +
2*a*#1^2]) & ][
-(t/Sqrt) + C]],
Function[{t}, InverseFunction[
(I*EllipticF[I*ArcSinh[
(2*Sqrt*Sqrt[
c/(3*b + Sqrt[9*b^2 -
48*a*c])])/Sqrt[#1]],
-((3*b + Sqrt[9*b^2 -
48*a*c])/(-3*b +
Sqrt[9*b^2 - 48*a*
c]))]*Sqrt[
1 - (12*c)/((-3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*Sqrt[
1 + (12*c)/((3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*#1)/(Sqrt*
Sqrt[c/(3*b + Sqrt[
9*b^2 - 48*a*c])]*
Sqrt[6*c + 3*b*#1 +
2*a*#1^2]) & ][
t/Sqrt + C]]}

Bobby

On Fri, 25 Feb 2005 01:18:45 -0500 (EST), Jens-Peer Kuska <kuska at informatik.uni-leipzig.de> wrote:

> Hi,
>
> deqn = s''[t] - a*s[t]^2 - b*s[t] - c == 0;
>
> ddeqn=Integrate[#, t] & /@ Expand[s'[t]*#] & /@ deqn
>
> gives you a nonlinear first order equation and DSolve[] can express the
>
> solution in InverseFunction[] of elliptic integrals.
>
> Regards
>
>   Jens
>
> "Umby" <umprisco at unina.it> schrieb im Newsbeitrag
> news:cvhequ\$qft\$1 at smc.vnet.net...
>> hi group,
>>
>> could anyone help me in solving the following nonlinear differential
>> equation:
>> s''[t] - a1s[t]^2 - b1 s[t] - c1 = 0
>> s = 0, s' = v0
>>
>> is it possible to solve it?
>>
>> thanks
>> -u
>>
>>
>
>
>
>
>

--
DrBob at bigfoot.com
www.eclecticdreams.net

```

• Prev by Date: Re: Printing numbersDavid Bailey,dbaileyconsultancy.co.uk
• Next by Date: Re: Bounds for Trig expression
• Previous by thread: Re: nonlinear differential equation
• Next by thread: Re: nonlinear differential equation