Re: Re: nonlinear differential equation
- To: mathgroup at smc.vnet.net
- Subject: [mg54699] Re: [mg54647] Re: nonlinear differential equation
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 27 Feb 2005 01:29:34 -0500 (EST)
- References: <cvhequ$qft$1@smc.vnet.net> <200502250618.BAA02402@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Yikes!!! Good luck inverting the functions involved. Off[Solve::verif, Solve::tdep] deqn = Derivative[2][s][t] - a*s[t]^2 - b*s[t] - c == 0; ddeqn = ((Integrate[#1, t] & ) /@ Expand[Derivative[1][s][t]* #1] & ) /@ deqn s /. DSolve[{%}, s, t] (-c)*s[t] - (1/2)*b*s[t]^2 - (1/3)*a*s[t]^3 + (1/2)*Derivative[1][s][t]^ 2 == 0 {Function[{t}, InverseFunction[ (I*EllipticF[I*ArcSinh[ (2*Sqrt[3]*Sqrt[ c/(3*b + Sqrt[9*b^2 - 48*a*c])])/Sqrt[#1]], -((3*b + Sqrt[9*b^2 - 48*a*c])/(-3*b + Sqrt[9*b^2 - 48*a* c]))]*Sqrt[ 1 - (12*c)/((-3*b + Sqrt[9*b^2 - 48*a*c])* #1)]*Sqrt[ 1 + (12*c)/((3*b + Sqrt[9*b^2 - 48*a*c])* #1)]*#1)/(Sqrt[3]* Sqrt[c/(3*b + Sqrt[ 9*b^2 - 48*a*c])]* Sqrt[6*c + 3*b*#1 + 2*a*#1^2]) & ][ -(t/Sqrt[3]) + C[1]]], Function[{t}, InverseFunction[ (I*EllipticF[I*ArcSinh[ (2*Sqrt[3]*Sqrt[ c/(3*b + Sqrt[9*b^2 - 48*a*c])])/Sqrt[#1]], -((3*b + Sqrt[9*b^2 - 48*a*c])/(-3*b + Sqrt[9*b^2 - 48*a* c]))]*Sqrt[ 1 - (12*c)/((-3*b + Sqrt[9*b^2 - 48*a*c])* #1)]*Sqrt[ 1 + (12*c)/((3*b + Sqrt[9*b^2 - 48*a*c])* #1)]*#1)/(Sqrt[3]* Sqrt[c/(3*b + Sqrt[ 9*b^2 - 48*a*c])]* Sqrt[6*c + 3*b*#1 + 2*a*#1^2]) & ][ t/Sqrt[3] + C[1]]]} Bobby On Fri, 25 Feb 2005 01:18:45 -0500 (EST), Jens-Peer Kuska <kuska at informatik.uni-leipzig.de> wrote: > Hi, > > deqn = s''[t] - a*s[t]^2 - b*s[t] - c == 0; > > ddeqn=Integrate[#, t] & /@ Expand[s'[t]*#] & /@ deqn > > gives you a nonlinear first order equation and DSolve[] can express the > > solution in InverseFunction[] of elliptic integrals. > > Regards > > Jens > > "Umby" <umprisco at unina.it> schrieb im Newsbeitrag > news:cvhequ$qft$1 at smc.vnet.net... >> hi group, >> >> could anyone help me in solving the following nonlinear differential >> equation: >> s''[t] - a1s[t]^2 - b1 s[t] - c1 = 0 >> s[0] = 0, s'[0] = v0 >> >> is it possible to solve it? >> >> thanks >> -u >> >> > > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Re: nonlinear differential equation
- From: "Jens-Peer Kuska" <kuska@informatik.uni-leipzig.de>
- Re: nonlinear differential equation