Re: cubic quaternion based surface
- To: mathgroup at smc.vnet.net
- Subject: [mg53481] Re: cubic quaternion based surface
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Fri, 14 Jan 2005 08:54:25 -0500 (EST)
- Organization: Uni Leipzig
- References: <cs5ap3$3qj$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, you mean x[t_]=x0/(Sqrt[2]-t0) y[t_]=y0/(Sqrt[2]-t0) z[t_]=z0/(Sqrt[2]-t0) without the SetDelayed[] because otherwise the t_ pattern is not replaced by p in your second call of ParametricPlot3D[] Regards Jens "Roger L. Bagula" <rlbtftn at netscape.net> schrieb im Newsbeitrag news:cs5ap3$3qj$1 at smc.vnet.net... > Clear[x0,y0,z0,t,p,x,y,z] > (* four space coordinates*) > x0=Cos[t-0]; > y0=Cos[t-Pi]; > z0=Cos[t+2*Pi/3]; > t0=Cos[t-Pi/6]; > (*Clifford torus projection*) > x[t_]:=x0/(Sqrt[2]-t0) > y[t_]:=y0/(Sqrt[2]-t0) > z[t_]:=z0/(Sqrt[2]-t0) > g=ParametricPlot3D[{x[t],y[t],z[t]},{t,-Pi,Pi}] > (* this resulting surface is a projective plane of a quaternionic type*) > g2=ParametricPlot3D[{x[t]*z[p],y[t]*x[p],z[t]*y[p]},{t,-Pi,Pi},{p,-Pi,Pi}, > Boxed->False,Axes->False,PlotPoints->60,PlotRange->All] > Show[g2,ViewPoint->{0.001, -0.045, 3.383}] > Show[g2,ViewPoint->{-3.360, -0.024, 0.397}] >