Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: cubic quaternion based surface

  • To: mathgroup at smc.vnet.net
  • Subject: [mg53481] Re: cubic quaternion based surface
  • From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
  • Date: Fri, 14 Jan 2005 08:54:25 -0500 (EST)
  • Organization: Uni Leipzig
  • References: <cs5ap3$3qj$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

you mean
 x[t_]=x0/(Sqrt[2]-t0)
 y[t_]=y0/(Sqrt[2]-t0)
 z[t_]=z0/(Sqrt[2]-t0)

without the SetDelayed[] because otherwise the t_ pattern
is not replaced by p in your second call of ParametricPlot3D[]

Regards
  Jens

"Roger L. Bagula" <rlbtftn at netscape.net> schrieb im Newsbeitrag 
news:cs5ap3$3qj$1 at smc.vnet.net...
> Clear[x0,y0,z0,t,p,x,y,z]
> (* four space coordinates*)
> x0=Cos[t-0];
> y0=Cos[t-Pi];
> z0=Cos[t+2*Pi/3];
> t0=Cos[t-Pi/6];
> (*Clifford torus projection*)
> x[t_]:=x0/(Sqrt[2]-t0)
> y[t_]:=y0/(Sqrt[2]-t0)
> z[t_]:=z0/(Sqrt[2]-t0)
> g=ParametricPlot3D[{x[t],y[t],z[t]},{t,-Pi,Pi}]
> (* this resulting surface is a projective plane of a quaternionic type*)
> g2=ParametricPlot3D[{x[t]*z[p],y[t]*x[p],z[t]*y[p]},{t,-Pi,Pi},{p,-Pi,Pi},
>     Boxed->False,Axes->False,PlotPoints->60,PlotRange->All]
> Show[g2,ViewPoint->{0.001, -0.045, 3.383}]
> Show[g2,ViewPoint->{-3.360, -0.024, 0.397}]
> 



  • Prev by Date: Re: Strange installation problem
  • Next by Date: Re: PlotLabel in two lines
  • Previous by thread: cubic quaternion based surface
  • Next by thread: Re: cubic quaternion based surface