Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

LegendreP -- up to which order?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg53518] LegendreP -- up to which order?
  • From: gert.lindner at snafu.de
  • Date: Sat, 15 Jan 2005 21:07:46 -0500 (EST)
  • Sender: owner-wri-mathgroup at wolfram.com

I compute the surface potentials generated by dipols within a homogeneous sphere
by using the associated Legendre Polynomials of first kind.

The symmetric results caused by the angle positions are good for an order < 60
(Mathematica 5.1, 64 Bit optimized). The order is indicated in the cyan
parameter field by 'm' (over sigma).
 
 *******************
 The question is: What do you think about 'm' - how big can (should) I set the
 value for 'm'? (over sigma)
 
 There are failures (outliers for some angles) in the case m>65.
 
 Please help me (can you post it in the group for me?)
 
 Thanks
 Gert Lindner
 
 Working Group 8.41  
 Mathematical Modelling and Simulation
 Physikalisch-Technische Bundesanstalt (PTB),
 10587 Berlin, Abbestr. 2-12
 Phone: ++49-30-3481-266  Fax: ++49-30-3481-506
 Email: Gert.Lindner at ptb.de


(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.1'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info at wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[      6476,        184]*)
(*NotebookOutlinePosition[      7106,        206]*)
(*  CellTagsIndexPosition[      7062,        202]*)
(*WindowFrame->Normal*)



Notebook[{
Cell[BoxData[
    \(\(\[CurlyTheta] = {92\ \[Degree], 92\ \[Degree], 115\ \[Degree], 
          92\ \[Degree], 60\ \[Degree], 46\ \[Degree], 60\ \[Degree], 
          92\ \[Degree], 115\ \[Degree], 71\ \[Degree], 32\ \[Degree], 
          32\ \[Degree], 71\ \[Degree], 115\ \[Degree], 92\ \[Degree], 
          46\ \[Degree], 0, 46\ \[Degree], 92\ \[Degree], 115\ \[Degree], 
          71\ \[Degree], 32\ \[Degree], 32\ \[Degree], 71\ \[Degree], 
          115\ \[Degree], 92\ \[Degree], 60\ \[Degree], 46\ \[Degree], 
          60\ \[Degree], 92\ \[Degree], 115\ \[Degree], 92\ \[Degree], 
          92\ \[Degree]};\)\)], "Input"],

Cell[BoxData[
    \(\(\[CurlyPhi] = {108\ \[Degree], 72\ \[Degree], 145\ \[Degree], 
          144\ \[Degree], 129\ \[Degree], 90\ \[Degree], 51\ \[Degree], 
          36\ \[Degree], 35\ \[Degree], 159\ \[Degree], 135\ \[Degree], 
          45\ \[Degree], 21\ \[Degree], 180\ \[Degree], 180\ \[Degree], 
          180\ \[Degree], 0, 0, 0, 0, 201\ \[Degree], 225\ \[Degree], 
          315\ \[Degree], 339\ \[Degree], 216\ \[Degree], 216\ \[Degree], 
          231\ \[Degree], 270\ \[Degree], 309\ \[Degree], 324\ \[Degree], 
          324\ \[Degree], 252\ \[Degree], 288\ \[Degree]};\)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(\(\(TableForm[
      Table[LegendreP[n, 1, 
          Cos[\[CurlyTheta]\[LeftDoubleBracket]3\[RightDoubleBracket]]], {n, 
          4}]]\)\(\ \)\( (*\ example\ *) \)\)\)], "Input"],

Cell[BoxData[
    InterpretationBox[GridBox[{
          {\(\((\(-1\) + 
                  Cos[115\ \[Degree]])\)\ \@\(\(1 + Cos[115\ \
\[Degree]]\)\/\(1 - Cos[115\ \[Degree]]\)\)\)},
          {\(\(-3\)\ Cos[
                115\ \[Degree]]\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + \
Cos[115\ \[Degree]])\)\)\)},
          {\(\(-\(3\/2\)\)\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + Cos[115\
\ \[Degree]])\)\)\ \((\(-1\) + 5\ Cos[115\ \[Degree]]\^2)\)\)},
          {\(\(-\(5\/2\)\)\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + Cos[115\
\ \[Degree]])\)\)\ \((\(-3\)\ Cos[115\ \[Degree]] + 
                  7\ Cos[115\ \[Degree]]\^3)\)\)}
          },
        RowSpacings->1,
        ColumnSpacings->3,
        RowAlignments->Baseline,
        ColumnAlignments->{Left}],
      TableForm[ {
        Times[ 
          Plus[ -1, 
            Cos[ 
              Times[ 115, Degree]]], 
          Power[ 
            Times[ 
              Power[ 
                Plus[ 1, 
                  Times[ -1, 
                    Cos[ 
                      Times[ 115, Degree]]]], -1], 
              Plus[ 1, 
                Cos[ 
                  Times[ 115, Degree]]]], 
            Rational[ 1, 2]]], 
        Times[ -3, 
          Cos[ 
            Times[ 115, Degree]], 
          Power[ 
            Times[ 
              Plus[ 1, 
                Times[ -1, 
                  Cos[ 
                    Times[ 115, Degree]]]], 
              Plus[ 1, 
                Cos[ 
                  Times[ 115, Degree]]]], 
            Rational[ 1, 2]]], 
        Times[ 
          Rational[ -3, 2], 
          Power[ 
            Times[ 
              Plus[ 1, 
                Times[ -1, 
                  Cos[ 
                    Times[ 115, Degree]]]], 
              Plus[ 1, 
                Cos[ 
                  Times[ 115, Degree]]]], 
            Rational[ 1, 2]], 
          Plus[ -1, 
            Times[ 5, 
              Power[ 
                Cos[ 
                  Times[ 115, Degree]], 2]]]], 
        Times[ 
          Rational[ -5, 2], 
          Power[ 
            Times[ 
              Plus[ 1, 
                Times[ -1, 
                  Cos[ 
                    Times[ 115, Degree]]]], 
              Plus[ 1, 
                Cos[ 
                  Times[ 115, Degree]]]], 
            Rational[ 1, 2]], 
          Plus[ 
            Times[ -3, 
              Cos[ 
                Times[ 115, Degree]]], 
            Times[ 7, 
              Power[ 
                Cos[ 
                  Times[ 115, Degree]], 3]]]]}]]], "Output"]
}, Open  ]],

Cell[BoxData[{
    \(\(m = 50;\)\), "\[IndentingNewLine]", 
    \(R = 0.0912; \[Sigma] = 1.0000; z\_0 = 0.0750; 
    P\_x = 50.0\ 10\^\(-9\);\)}], "Input",
  Background->RGBColor[0, 1, 1]],

Cell[BoxData[
    \(\(\[CapitalPhi] = \(-P\_x\)\ \(Cos[\[CurlyPhi]]\/\(4  \[Pi]\ \[Sigma]\ \
R\^2\)\) \(\[Sum]\+\(n = 1\)\%m\((\(\(2  n + 1\)\/n\) \(\((z\_0\/R)\)\^\(n - 
                      1\)\) LegendreP[n, 1, 
                  Cos[\[CurlyTheta]]])\)\);\)\)], "Input"],

Cell[BoxData[
    \(\(ListPlot[\[CapitalPhi], PlotRange \[Rule] All, 
        PlotStyle \[Rule] Hue[ .7], 
        AxesLabel \[Rule] {"\<\>", "\<\[CapitalPhi]\>"}, 
        PlotJoined \[Rule] True];\)\)], "Input"]
},
FrontEndVersion->"5.1 for X",
ScreenRectangle->{{0, 1280}, {0, 1024}},
WindowSize->{846, 675},
WindowMargins->{{0, Automatic}, {Automatic, 105}}
]

(*******************************************************************
Cached data follows.  If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of  the file.  The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 631, 9, 43, "Input"],
Cell[2388, 62, 598, 8, 43, "Input"],

Cell[CellGroupData[{
Cell[3011, 74, 200, 4, 27, "Input"],
Cell[3214, 80, 2562, 83, 142, "Output"]
}, Open  ]],
Cell[5791, 166, 188, 4, 61, "Input"],
Cell[5982, 172, 274, 4, 53, "Input"],
Cell[6259, 178, 213, 4, 27, "Input"]
}
]
*)



(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)





  • Prev by Date: Re: Re: Looking for Window Version of "Factorization.m" program
  • Next by Date: Mathematica, LabView and I/O devices
  • Previous by thread: Re: Prime[..] slows down
  • Next by thread: Re: LegendreP -- up to which order?