LegendreP -- up to which order?
- To: mathgroup at smc.vnet.net
- Subject: [mg53518] LegendreP -- up to which order?
- From: gert.lindner at snafu.de
- Date: Sat, 15 Jan 2005 21:07:46 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
I compute the surface potentials generated by dipols within a homogeneous sphere by using the associated Legendre Polynomials of first kind. The symmetric results caused by the angle positions are good for an order < 60 (Mathematica 5.1, 64 Bit optimized). The order is indicated in the cyan parameter field by 'm' (over sigma). ******************* The question is: What do you think about 'm' - how big can (should) I set the value for 'm'? (over sigma) There are failures (outliers for some angles) in the case m>65. Please help me (can you post it in the group for me?) Thanks Gert Lindner Working Group 8.41 Mathematical Modelling and Simulation Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Abbestr. 2-12 Phone: ++49-30-3481-266 Fax: ++49-30-3481-506 Email: Gert.Lindner at ptb.de (************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.1' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 6476, 184]*) (*NotebookOutlinePosition[ 7106, 206]*) (* CellTagsIndexPosition[ 7062, 202]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ \(\(\[CurlyTheta] = {92\ \[Degree], 92\ \[Degree], 115\ \[Degree], 92\ \[Degree], 60\ \[Degree], 46\ \[Degree], 60\ \[Degree], 92\ \[Degree], 115\ \[Degree], 71\ \[Degree], 32\ \[Degree], 32\ \[Degree], 71\ \[Degree], 115\ \[Degree], 92\ \[Degree], 46\ \[Degree], 0, 46\ \[Degree], 92\ \[Degree], 115\ \[Degree], 71\ \[Degree], 32\ \[Degree], 32\ \[Degree], 71\ \[Degree], 115\ \[Degree], 92\ \[Degree], 60\ \[Degree], 46\ \[Degree], 60\ \[Degree], 92\ \[Degree], 115\ \[Degree], 92\ \[Degree], 92\ \[Degree]};\)\)], "Input"], Cell[BoxData[ \(\(\[CurlyPhi] = {108\ \[Degree], 72\ \[Degree], 145\ \[Degree], 144\ \[Degree], 129\ \[Degree], 90\ \[Degree], 51\ \[Degree], 36\ \[Degree], 35\ \[Degree], 159\ \[Degree], 135\ \[Degree], 45\ \[Degree], 21\ \[Degree], 180\ \[Degree], 180\ \[Degree], 180\ \[Degree], 0, 0, 0, 0, 201\ \[Degree], 225\ \[Degree], 315\ \[Degree], 339\ \[Degree], 216\ \[Degree], 216\ \[Degree], 231\ \[Degree], 270\ \[Degree], 309\ \[Degree], 324\ \[Degree], 324\ \[Degree], 252\ \[Degree], 288\ \[Degree]};\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\(TableForm[ Table[LegendreP[n, 1, Cos[\[CurlyTheta]\[LeftDoubleBracket]3\[RightDoubleBracket]]], {n, 4}]]\)\(\ \)\( (*\ example\ *) \)\)\)], "Input"], Cell[BoxData[ InterpretationBox[GridBox[{ {\(\((\(-1\) + Cos[115\ \[Degree]])\)\ \@\(\(1 + Cos[115\ \ \[Degree]]\)\/\(1 - Cos[115\ \[Degree]]\)\)\)}, {\(\(-3\)\ Cos[ 115\ \[Degree]]\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + \ Cos[115\ \[Degree]])\)\)\)}, {\(\(-\(3\/2\)\)\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + Cos[115\ \ \[Degree]])\)\)\ \((\(-1\) + 5\ Cos[115\ \[Degree]]\^2)\)\)}, {\(\(-\(5\/2\)\)\ \@\(\((1 - Cos[115\ \[Degree]])\)\ \((1 + Cos[115\ \ \[Degree]])\)\)\ \((\(-3\)\ Cos[115\ \[Degree]] + 7\ Cos[115\ \[Degree]]\^3)\)\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ { Times[ Plus[ -1, Cos[ Times[ 115, Degree]]], Power[ Times[ Power[ Plus[ 1, Times[ -1, Cos[ Times[ 115, Degree]]]], -1], Plus[ 1, Cos[ Times[ 115, Degree]]]], Rational[ 1, 2]]], Times[ -3, Cos[ Times[ 115, Degree]], Power[ Times[ Plus[ 1, Times[ -1, Cos[ Times[ 115, Degree]]]], Plus[ 1, Cos[ Times[ 115, Degree]]]], Rational[ 1, 2]]], Times[ Rational[ -3, 2], Power[ Times[ Plus[ 1, Times[ -1, Cos[ Times[ 115, Degree]]]], Plus[ 1, Cos[ Times[ 115, Degree]]]], Rational[ 1, 2]], Plus[ -1, Times[ 5, Power[ Cos[ Times[ 115, Degree]], 2]]]], Times[ Rational[ -5, 2], Power[ Times[ Plus[ 1, Times[ -1, Cos[ Times[ 115, Degree]]]], Plus[ 1, Cos[ Times[ 115, Degree]]]], Rational[ 1, 2]], Plus[ Times[ -3, Cos[ Times[ 115, Degree]]], Times[ 7, Power[ Cos[ Times[ 115, Degree]], 3]]]]}]]], "Output"] }, Open ]], Cell[BoxData[{ \(\(m = 50;\)\), "\[IndentingNewLine]", \(R = 0.0912; \[Sigma] = 1.0000; z\_0 = 0.0750; P\_x = 50.0\ 10\^\(-9\);\)}], "Input", Background->RGBColor[0, 1, 1]], Cell[BoxData[ \(\(\[CapitalPhi] = \(-P\_x\)\ \(Cos[\[CurlyPhi]]\/\(4 \[Pi]\ \[Sigma]\ \ R\^2\)\) \(\[Sum]\+\(n = 1\)\%m\((\(\(2 n + 1\)\/n\) \(\((z\_0\/R)\)\^\(n - 1\)\) LegendreP[n, 1, Cos[\[CurlyTheta]]])\)\);\)\)], "Input"], Cell[BoxData[ \(\(ListPlot[\[CapitalPhi], PlotRange \[Rule] All, PlotStyle \[Rule] Hue[ .7], AxesLabel \[Rule] {"\<\>", "\<\[CapitalPhi]\>"}, PlotJoined \[Rule] True];\)\)], "Input"] }, FrontEndVersion->"5.1 for X", ScreenRectangle->{{0, 1280}, {0, 1024}}, WindowSize->{846, 675}, WindowMargins->{{0, Automatic}, {Automatic, 105}} ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1754, 51, 631, 9, 43, "Input"], Cell[2388, 62, 598, 8, 43, "Input"], Cell[CellGroupData[{ Cell[3011, 74, 200, 4, 27, "Input"], Cell[3214, 80, 2562, 83, 142, "Output"] }, Open ]], Cell[5791, 166, 188, 4, 61, "Input"], Cell[5982, 172, 274, 4, 53, "Input"], Cell[6259, 178, 213, 4, 27, "Input"] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)