Explicit solution to Root[]
- To: mathgroup at smc.vnet.net
- Subject: [mg58407] Explicit solution to Root[]
- From: "Mukhtar Bekkali" <mbekkali at gmail.com>
- Date: Fri, 1 Jul 2005 02:01:59 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Here is the code: \!\(\(Root[\(-2\)\ #1\^3 + 2\ #1\^4 - #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 6\ #1\^2\ Root[\(-4\) - \ 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] + 6\ #1\^3\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 5\ \ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, \ 1]\^2 - 6\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1]\^2 + 6\ #1\^2\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1]\^2 - 2\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1]\ \^3 + 2\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ \ #1\^5 &, 1]\^3 &, 2];\)\) I would guess it is a number. I applied RootReduce, ToRadicals, N or combinations of thereof, however, nothing seem to convert the above expression into an explicit number. What command or sequence of commands would do the job? Please advise. Thanks, Mukhtar Bekkali