Re: Superscript Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg58682] Re: Superscript Problem
- From: dh <dh at metrohm.ch>
- Date: Thu, 14 Jul 2005 02:49:07 -0400 (EDT)
- References: <db2gb0$djt$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi Stan, you are right most superscripts are treated as an exponent. A way around is to use low level input, e.g. "SubsuperscriptBox" The drawback is, that you must use "DisplayForm" to view the glamour if it. Example: a1=SubsuperscriptBox[b, 0, 0]; a2=SubsuperscriptBox[b, 1, 0]; (*do not use the same variable name on the left side like inside SubsuperscriptBox*) with a1 and a2 you can do whatever you want, but if you want to see the super and subscripts you need to use "DisplayForm" a1 gives: SubsuperscriptBox[b, 0, 0] not what you want but: a1 //DisplayForm gives bd0u0 where I use d for subscript and u for superscript. a1 a1 //DisplayForm gives (bd0u0)^2 a1 a2 //DisplayForm gives bd0u0 bd1u0 sincerely, Daniel Stan Gianzero wrote: > Jean-Marc Gulliet, > I appreciate your spending the time on my problem. I have two points to > make. First, I have just begun using Mathematica, so I would have > difficulty applying your algorithm. Second, it would be best to > describe my problem in its proper context. I am attaching a Mathematica > file that describes the problem and what I have done to circumvent the > problem. In short, I placed the superscripts along with the other > subscripts that I used in the problem. I simply want to use the > superscripts as LABELS and do NOT want them to be interpreted as an > exponents. If after reading my attachment you feel you can help, I > would greatly appreciate it. Please, however, do not spend too much of > your time tending to the problem. > Stan > > > (************** Content-type: application/mathematica ************** > CreatedBy='Mathematica 5.1' > > Mathematica-Compatible Notebook > > This notebook can be used with any Mathematica-compatible > application, such as Mathematica, MathReader or Publicon. The data > for the notebook starts with the line containing stars above. > > To get the notebook into a Mathematica-compatible application, do > one of the following: > > * Save the data starting with the line of stars above into a file > with a name ending in .nb, then open the file inside the > application; > > * Copy the data starting with the line of stars above to the > clipboard, then use the Paste menu command inside the application. > > Data for notebooks contains only printable 7-bit ASCII and can be > sent directly in email or through ftp in text mode. Newlines can be > CR, LF or CRLF (Unix, Macintosh or MS-DOS style). > > NOTE: If you modify the data for this notebook not in a Mathematica- > compatible application, you must delete the line below containing > the word CacheID, otherwise Mathematica-compatible applications may > try to use invalid cache data. > > For more information on notebooks and Mathematica-compatible > applications, contact Wolfram Research: > web: http://www.wolfram.com > email: info at wolfram.com > phone: +1-217-398-0700 (U.S.) > > Notebook reader applications are available free of charge from > Wolfram Research. > *******************************************************************) > > (*CacheID: 232*) > > > (*NotebookFileLineBreakTest > NotebookFileLineBreakTest*) > (*NotebookOptionsPosition[ 4669, 122]*) > (*NotebookOutlinePosition[ 5305, 144]*) > (* CellTagsIndexPosition[ 5261, 140]*) > (*WindowFrame->Normal*) > > > > Notebook[{ > Cell[BoxData[ > \(\("\<Basic Algorithm relating Local and Global Matrices\>";\)\)], \ > "Input"], > > Cell[BoxData[ > \(For[i = 1, i < 8, \(i++\), > For[j = 1, > j < 8, \(j++\), \ \ B[i, > j] = \[Sum]\+\(n = 1\)\%3\(\[Sum]\+\(k = 0\)\%1\(\[Sum]\+\(l = \ > 0\)\%1\(\[Sum]\+\(p = 0\)\%1\(\[Sum]\+\(q = 0\)\%1\((KroneckerDelta[i, > 2 \((n + l)\) - \((k + 1)\)]* > KroneckerDelta[j, 2 \((n + q)\) - \((p + 1)\)]* > b\_\(n - 1, 2 \((n + l)\) - \((k + 1)\), 2 \((n + \ > q)\) - \((p + 1)\)\))\)\)\)\)\)]]\)], "Input"], > > Cell[BoxData[""], "Input"], > > Cell[CellGroupData[{ > > Cell[BoxData[ > \(MatrixForm[Array[B, {7, 7}]]\)], "Input"], > > Cell[BoxData[ > TagBox[ > RowBox[{"(", "\[NoBreak]", GridBox[{ > {\(b\_\(0, 1, 1\)\), \(b\_\(0, 1, 2\)\), \(b\_\(0, 1, 3\)\), "0", > "0", "0", "0"}, > {\(b\_\(0, 2, 1\)\), \(b\_\(0, 2, 2\) + > b\_\(1, 2, 2\)\), \(b\_\(0, 2, 3\) + > b\_\(1, 2, 3\)\), \(b\_\(1, 2, 4\)\), \(b\_\(1, 2, 5\)\), "0", > "0"}, > {\(b\_\(0, 3, 1\)\), \(b\_\(0, 3, 2\) + > b\_\(1, 3, 2\)\), \(b\_\(0, 3, 3\) + > b\_\(1, 3, 3\)\), \(b\_\(1, 3, 4\)\), \(b\_\(1, 3, 5\)\), "0", > "0"}, > { > "0", \(b\_\(1, 4, 2\)\), \(b\_\(1, 4, 3\)\), \(b\_\(1, 4, 4\) + > b\_\(2, 4, 4\)\), \(b\_\(1, 4, 5\) + > b\_\(2, 4, 5\)\), \(b\_\(2, 4, 6\)\), \(b\_\(2, 4, 7\)\)}, > { > "0", \(b\_\(1, 5, 2\)\), \(b\_\(1, 5, 3\)\), \(b\_\(1, 5, 4\) + > b\_\(2, 5, 4\)\), \(b\_\(1, 5, 5\) + > b\_\(2, 5, 5\)\), \(b\_\(2, 5, 6\)\), \(b\_\(2, 5, 7\)\)}, > {"0", "0", > "0", \(b\_\(2, 6, 4\)\), \(b\_\(2, 6, 5\)\), \(b\_\(2, 6, > 6\)\), \(b\_\(2, 6, 7\)\)}, > {"0", "0", > "0", \(b\_\(2, 7, 4\)\), \(b\_\(2, 7, 5\)\), \(b\_\(2, 7, > 6\)\), \(b\_\(2, 7, 7\)\)} > }, > RowSpacings->1, > ColumnSpacings->1, > ColumnAlignments->{Left}], "\[NoBreak]", ")"}], > Function[ BoxForm`e$, > MatrixForm[ BoxForm`e$]]]], "Output"] > }, Open ]], > > Cell[BoxData[ > \(\("\<The first subscript on the b's (local) I would like to have as a \ > superscript, but Mathematica treats all superscripts as exponents thereby \ > producing unity whenever the superscript is zero. The problem was \ > circumvented by adopting triple subscripts with the first subscript playing \ > the role of the superscript\>";\)\)], "Input"], > > Cell[BoxData[ > \(\(\(\*"\"\<As an example, the first element in the matrix, \!\(b\_\(\(0\ > \)\(,\)\(1\)\(,\)\(1\)\(,\)\(\\\ \)\)\)I would like to be \!\(b\_\(\(1\)\(,\)\ > \(1\)\(\\\ \)\)\%0\) because it has a special physical \ > significance.\>\"";\)\(\[IndentingNewLine]\) > \)\)], "Input"] > }, > FrontEndVersion->"5.1 for Macintosh", > ScreenRectangle->{{4, 1280}, {0, 1002}}, > WindowSize->{945, 767}, > WindowMargins->{{4, Automatic}, {Automatic, 4}} > ] > > (******************************************************************* > Cached data follows. If you edit this Notebook file directly, not > using Mathematica, you must remove the line containing CacheID at > the top of the file. The cache data will then be recreated when > you save this file from within Mathematica. > *******************************************************************) > > (*CellTagsOutline > CellTagsIndex->{} > *) > > (*CellTagsIndex > CellTagsIndex->{} > *) > > (*NotebookFileOutline > Notebook[{ > Cell[1754, 51, 96, 2, 39, "Input"], > Cell[1853, 55, 499, 9, 193, "Input"], > Cell[2355, 66, 26, 0, 39, "Input"], > > Cell[CellGroupData[{ > Cell[2406, 70, 61, 1, 39, "Input"], > Cell[2470, 73, 1523, 32, 207, "Output"] > }, Open ]], > Cell[4008, 108, 361, 5, 154, "Input"], > Cell[4372, 115, 293, 5, 92, "Input"] > } > ] > *) > > > > (******************************************************************* > End of Mathematica Notebook file. > *******************************************************************) >