Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Mathematical Experiments

  • To: mathgroup at smc.vnet.net
  • Subject: [mg54777] Mathematical Experiments
  • From: danieldaniel at gmail.com (Daniel Alayon Solarz)
  • Date: Tue, 1 Mar 2005 01:58:39 -0500 (EST)
  • Sender: owner-wri-mathgroup at wolfram.com

I just wanted to share some minor graphical applications that came
along with my research.  Try tweaking parameters and see what happens. Here are
showed the 6 solutions of order 1,2,3. The other 6 are anti-solutions,
is possible to figure out how to construct them. Enjoy.

<< Graphics`Animation`
<< Graphics`ParametricPlot3D`
Animate[ParametricPlot3D[{(Log[Tan[v/2]] + t)*
       Cos[u] Sin[v], (Log[Tan[v/2]] + t)*Sin[u] Sin[v],
(Log[Tan[v/2]] + t)*
       Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}], {t,
-Pi/8,
   Pi/2}]

<< Graphics`Animation`
<< Graphics`ParametricPlot3D`
Animate[ParametricPlot3D[{(u + t)*Cos[u] Sin[v], (u + t + 1)*
       Sin[u] Sin[v], (u + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6,
Pi/3,
     Pi/30}], {t, -Pi, 4Pi/2}]

<< Graphics`Animation`
Animate[ParametricPlot3D[{(2u*Log[Tan[v/2]] + t)*
       Cos[u] Sin[v], (2u*Log[Tan[v/2]] + t)*
       Sin[u] Sin[v], (2u*Log[Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi,
     Pi/20}, {v, Pi/3, Pi/2, Pi/20}], {t, -4Pi, 4Pi/2}]

<< Graphics`Animation`
Animate[ParametricPlot3D[{(u^ 2 - Log[2Tan[v/2]] + t)*
       Cos[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)*
       Sin[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)*Cos[v]}, {u, -Pi,
Pi,
     Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}]

<< Graphics`Animation`
Animate[ParametricPlot3D[{(u^ 3 - 3u*Log[2Tan[v/2]] + t)*
       Cos[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)*
       Sin[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)*Cos[v]}, {u,
-Pi, Pi,
     Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}]

<< Graphics`Animation`
Animate[ParametricPlot3D[{(3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)*
       Cos[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)*
       Sin[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)*
       Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/3, Pi/2, Pi/30}], {t,
-4Pi, 4Pi}]

Regards
Daniel


  • Prev by Date: Re: Construcing correlation matrix from time-ordered list
  • Next by Date: Re: Polygons on spheres
  • Previous by thread: Re: Construcing correlation matrix from time-ordered list
  • Next by thread: Re: Mathematical Experiments