Re: Mathematical Experiments
- To: mathgroup at smc.vnet.net
- Subject: [mg54803] Re: [mg54777] Mathematical Experiments
- From: DrBob <drbob at bigfoot.com>
- Date: Wed, 2 Mar 2005 01:26:50 -0500 (EST)
- References: <200503010658.BAA25222@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
I have Needs["Graphics`"] in my Init file, so I thought I'd never need to manually load graphics packages like Graphics`ParametricPlot3D`. Your examples proved me wrong. If I don't load that package, ParametricPlot3D works, but not with the 4-element ranges you've used below. Including a step-size isn't necessary for most of your examples, but it is for the last one. It seems to hang up my machine if I leave it out, and even Pi/30 is too small for comfort. Bobby On Tue, 1 Mar 2005 01:58:39 -0500 (EST), Daniel Alayon Solarz <danieldaniel at gmail.com> wrote: > I just wanted to share some minor graphical applications that came > along with my research. Try tweaking parameters and see what happens. Here are > showed the 6 solutions of order 1,2,3. The other 6 are anti-solutions, > is possible to figure out how to construct them. Enjoy. > > << Graphics`Animation` > << Graphics`ParametricPlot3D` > Animate[ParametricPlot3D[{(Log[Tan[v/2]] + t)* > Cos[u] Sin[v], (Log[Tan[v/2]] + t)*Sin[u] Sin[v], > (Log[Tan[v/2]] + t)* > Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}], {t, > -Pi/8, > Pi/2}] > > << Graphics`Animation` > << Graphics`ParametricPlot3D` > Animate[ParametricPlot3D[{(u + t)*Cos[u] Sin[v], (u + t + 1)* > Sin[u] Sin[v], (u + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, > Pi/3, > Pi/30}], {t, -Pi, 4Pi/2}] > > << Graphics`Animation` > Animate[ParametricPlot3D[{(2u*Log[Tan[v/2]] + t)* > Cos[u] Sin[v], (2u*Log[Tan[v/2]] + t)* > Sin[u] Sin[v], (2u*Log[Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, > Pi/20}, {v, Pi/3, Pi/2, Pi/20}], {t, -4Pi, 4Pi/2}] > > << Graphics`Animation` > Animate[ParametricPlot3D[{(u^ 2 - Log[2Tan[v/2]] + t)* > Cos[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)* > Sin[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)*Cos[v]}, {u, -Pi, > Pi, > Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}] > > << Graphics`Animation` > Animate[ParametricPlot3D[{(u^ 3 - 3u*Log[2Tan[v/2]] + t)* > Cos[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)* > Sin[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)*Cos[v]}, {u, > -Pi, Pi, > Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}] > > << Graphics`Animation` > Animate[ParametricPlot3D[{(3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* > Cos[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* > Sin[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* > Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/3, Pi/2, Pi/30}], {t, > -4Pi, 4Pi}] > > Regards > Daniel > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Mathematical Experiments
- From: danieldaniel@gmail.com (Daniel Alayon Solarz)
- Mathematical Experiments