Re: Mathematical Experiments
- To: mathgroup at smc.vnet.net
- Subject: [mg54802] Re: [mg54777] Mathematical Experiments
- From: "David Park" <djmp at earthlink.net>
- Date: Wed, 2 Mar 2005 01:26:48 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Daniel, Very interesting but what is it? In any case, you could improve on the plots. First, you don't have to keep reading in the packages. Next, in order to obtain a smooth animation you should have the same PlotRange for all frames of the animation. This means you must specify PlotRange in the plot statement. Otherwise Mathematica picks the PlotRange it thinks is best for each frame. Below I have redone your plots. I added a colored background and code at the end of each animation that automatically selects the frame cells, closes them and starts the animation. I also put a colored background, got rid of the axes and subdued the bounding box. The last animation appeared to have overlapping surfaces. This greatly slows the rendering of the plots. I changed the u range to stop the overlapping but that may not be what you want. << Graphics`Animation` << Graphics`ParametricPlot3D` << Graphics`Colors` Animate[ParametricPlot3D[{(Log[Tan[v/2]] + t)*Cos[u]*Sin[v], (Log[Tan[v/2]] + t)*Sin[u]*Sin[v], (Log[Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*0.1, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -(Pi/8), Pi/2}, Frames -> 42] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] Animate[ParametricPlot3D[{(u + t)*Cos[u]*Sin[v], (u + t + 1)*Sin[u]*Sin[v], (u + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*0.8, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -Pi, (4*Pi)/2}] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] Animate[ParametricPlot3D[{(2*u*Log[Tan[v/2]] + t)*Cos[u]*Sin[v], (2*u*Log[Tan[v/2]] + t)*Sin[u]*Sin[v], (2*u*Log[Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/20}, {v, Pi/3, Pi/2, Pi/20}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*1.5, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -4*Pi, (4*Pi)/2}, Frames -> 41] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] Animate[ParametricPlot3D[{(u^2 - Log[2*Tan[v/2]] + t)*Cos[u]*Sin[v], (u^2 - Log[2*Tan[v/2]] + t)*Sin[u]*Sin[v], (u^2 - Log[2*Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/4, Pi/2, Pi/30}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*1.5, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -4*Pi, 4*Pi}] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] Animate[ParametricPlot3D[{(u^3 - 3*u*Log[2*Tan[v/2]] + t)*Cos[u]*Sin[v], (u^3 - 3*u*Log[2*Tan[v/2]] + t)*Sin[u]*Sin[v], (u^3 - 3*u*Log[2*Tan[v/2]] + t)* Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/4, Pi/2, Pi/30}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*2, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -4*Pi, 4*Pi}] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] Animate[ParametricPlot3D[{(3*u^2*Log[2*Tan[v/2]] - Log[3*Tan[v/2]] + t)*Cos[u]* Sin[v], (3*u^2*Log[2*Tan[v/2]] - Log[3*Tan[v/2]] + t)*Sin[u]*Sin[v], (3*u^2*Log[2*Tan[v/2]] - Log[3*Tan[v/2]] + t)*Cos[v]}, {u, -Pi/2, Pi, Pi/30}, {v, Pi/3, Pi/2, Pi/30}, PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}*2, Axes -> False, BoxStyle -> Gray, Background -> Linen, ImageSize -> 500], {t, -4*Pi, 4*Pi}] SelectionMove[EvaluationNotebook[], All, GeneratedCell] FrontEndTokenExecute["OpenCloseGroup"]; Pause[0.5]; FrontEndExecute[{FrontEnd`SelectionAnimate[200, AnimationDisplayTime -> 0.1, AnimationDirection -> ForwardBackward]}] David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ From: Daniel Alayon Solarz [mailto:danieldaniel at gmail.com] To: mathgroup at smc.vnet.net I just wanted to share some minor graphical applications that came along with my research. Try tweaking parameters and see what happens. Here are showed the 6 solutions of order 1,2,3. The other 6 are anti-solutions, is possible to figure out how to construct them. Enjoy. << Graphics`Animation` << Graphics`ParametricPlot3D` Animate[ParametricPlot3D[{(Log[Tan[v/2]] + t)* Cos[u] Sin[v], (Log[Tan[v/2]] + t)*Sin[u] Sin[v], (Log[Tan[v/2]] + t)* Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}], {t, -Pi/8, Pi/2}] << Graphics`Animation` << Graphics`ParametricPlot3D` Animate[ParametricPlot3D[{(u + t)*Cos[u] Sin[v], (u + t + 1)* Sin[u] Sin[v], (u + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/6, Pi/3, Pi/30}], {t, -Pi, 4Pi/2}] << Graphics`Animation` Animate[ParametricPlot3D[{(2u*Log[Tan[v/2]] + t)* Cos[u] Sin[v], (2u*Log[Tan[v/2]] + t)* Sin[u] Sin[v], (2u*Log[Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/20}, {v, Pi/3, Pi/2, Pi/20}], {t, -4Pi, 4Pi/2}] << Graphics`Animation` Animate[ParametricPlot3D[{(u^ 2 - Log[2Tan[v/2]] + t)* Cos[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)* Sin[u] Sin[v], (u^2 - Log[2Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}] << Graphics`Animation` Animate[ParametricPlot3D[{(u^ 3 - 3u*Log[2Tan[v/2]] + t)* Cos[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)* Sin[u] Sin[v], (u^ 3 - 3u*Log[2Tan[v/2]] + t)*Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/4, Pi/2, Pi/30}], {t, -4Pi, 4Pi}] << Graphics`Animation` Animate[ParametricPlot3D[{(3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* Cos[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* Sin[u] Sin[v], (3u^ 2*Log[2Tan[v/2]] - Log[3Tan[v/2]] + t)* Cos[v]}, {u, -Pi, Pi, Pi/30}, {v, Pi/3, Pi/2, Pi/30}], {t, -4Pi, 4Pi}] Regards Daniel