Re: Surface Normal
- To: mathgroup at smc.vnet.net
- Subject: [mg55183] Re: Surface Normal
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Wed, 16 Mar 2005 05:35:58 -0500 (EST)
- Organization: Universitaet Hannover
- References: <d15s2g$9k2$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
gouqizi.lvcha at gmail.com schrieb: > Hi, All: > > If I have a surface in parametric form > > For example, > x = (10 + 5cosv)cosu > y = (10 + 5cosv)sinu > z = 5sinv > > How can I quickly calculate its normal for any (u,v) by mathematica Vector of torus surface point X = {(10 + 5Cos[v])Cos[u], (10 + 5Cos[v])Sin[u], 5Sin[v]} ParametricPlot3D[X, {u, 0, 1.5 Pi}, {v, 0, 1.5 Pi}] Local tangent vectors {du,dv}=D[X,#]&/@{u,v}//FullSimplify {{-5 (2 + Cos[v]) Sin[u], 5 Cos[u] (2 + Cos[v]), 0}, {-5 Cos[u] Sin[v], -5 Sin[u] Sin[v], 5 Cos[v]}} local normal vector (provided du!=0, dv!=0) dn=Cross[du,dv]//FullSimplify {25 Cos[u] Cos[v] (2 + Cos[v]), 25 Cos[v] (2 + Cos[v]) Sin[u], 25 (2 + Cos[v]) Sin[v]} {du.dv,dn.du,dn.dv } {0,0,0} Scale factors {du.du, dv.dv, dn.dn} // FullSimplify {25((2 + Cos[v]))^2, 25, 625 ((2 + Cos[v]))^2}) Metric has no singularities in this parametrisation. -- Roland Franzius