Re: Re: Surface Normal
- To: mathgroup at smc.vnet.net
- Subject: [mg55226] Re: [mg55195] Re: Surface Normal
- From: DrBob <drbob at bigfoot.com>
- Date: Thu, 17 Mar 2005 03:28:53 -0500 (EST)
- References: <d15s2g$9k2$1@smc.vnet.net> <200503161036.FAA23841@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Or: f[u_, v_] := {5 Cos[u] (Cos[v] + 2), 5 Sin[u] (Cos[v] + 2), 5 Sin[v]}; df[u_, v_] = FullSimplify[Cross @@ Transpose@D[f[u, v], {{u, v}}]]; DisplayTogether[ ParametricPlot3D[f[u, v], {u, 0, 2*Pi}, {v, 0, 2*Pi}], Graphics3D[Table[Line[{f[u, v], f[u, v] + 0.1*df[u, v]}], {u, 0, 2*Pi, (2*Pi)/20}, {v, 0, 2*Pi, (2*Pi)/20}]]]; Bobby On Wed, 16 Mar 2005 05:36:22 -0500 (EST), Steve Luttrell <steve_usenet at _removemefirst_luttrell.org.uk> wrote: > You need to compute the cross product of the derivatives of your parametric > surface w.r.t. the parameters. > > Define your parametric surface (a torus). > > f[u_, v_] := {(10 + 5*Cos[v])*Cos[u], (10 + 5*Cos[v])*Sin[u], 5*Sin[v]}; > > Compute the derivatives w.r.t. parameters and form the cross product. > > df[u_, v_] = Simplify[Cross[D[f[u, v], u], D[f[u, v], v]]] > > {25*Cos[u]*Cos[v]*(2 + Cos[v]), 25*Cos[v]*(2 + Cos[v])*Sin[u], 25*(2 + > Cos[v])*Sin[v]} > > Plot the parametric surface. > > g1 = ParametricPlot3D[f[u, v], {u, 0, 2*Pi}, {v, 0, 2*Pi}]; > > Plot a field of surface normals. > > g2 = Show[Graphics3D[Table[Line[{f[u, v], f[u, v] + 0.1*df[u, v]}], {u, 0, > 2*Pi, (2*Pi)/20}, > {v, 0, 2*Pi, (2*Pi)/20}]]]; > > Display the above two plots together. > > Show[g1,g2]; > > Steve Luttrell > > <gouqizi.lvcha at gmail.com> wrote in message news:d15s2g$9k2$1 at smc.vnet.net... >> Hi, All: >> >> If I have a surface in parametric form >> >> For example, >> x = (10 + 5cosv)cosu >> y = (10 + 5cosv)sinu >> z = 5sinv >> >> How can I quickly calculate its normal for any (u,v) by mathematica >> >> Rick >> > > > > > -- DrBob at bigfoot.com
- References:
- Re: Surface Normal
- From: "Steve Luttrell" <steve_usenet@_removemefirst_luttrell.org.uk>
- Re: Surface Normal