Re: Re: Surface Normal
- To: mathgroup at smc.vnet.net
- Subject: [mg55223] Re: [mg55198] Re: Surface Normal
- From: DrBob <drbob at bigfoot.com>
- Date: Thu, 17 Mar 2005 03:28:45 -0500 (EST)
- References: <d15s2g$9k2$1@smc.vnet.net> <200503161036.FAA23857@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
This may be easier to type and remember (when f is vector valued): normVec[f_][u_, v_] := Cross @@ Transpose@D[f[u, v], {{u, v}}] Bobby On Wed, 16 Mar 2005 05:36:34 -0500 (EST), Peter Pein <petsie at arcor.de> wrote: > gouqizi.lvcha at gmail.com wrote: >> Hi, All: >> >> If I have a surface in parametric form >> >> For example, >> x = (10 + 5cosv)cosu >> y = (10 + 5cosv)sinu >> z = 5sinv >> >> How can I quickly calculate its normal for any (u,v) by mathematica >> >> Rick >> > The same way you would do with pencil & paper: > > In[1]:= normVec[f_][u_,v_]:= > Cross[Derivative[1,0][f][u,v],Derivative[0,1][f][u,v]] > In[2]:= f[u_,v_]:={5 Cos[u](Cos[v]+2),5 Sin[u](Cos[v]+2),5 Sin[v]}; > In[3]:= nv = FullSimplify[normVec[f][u, v]] > Out[6]= > {25*Cos[u]*Cos[v]*(2 + Cos[v]), > 25*Cos[v]*(2 + Cos[v])*Sin[u], > 25*(2 + Cos[v])*Sin[v]} > > If you need it normalized; divide by > In[4]:= absnv = Simplify[Sqrt[#1 . #1]&[nv], v \[Element] Reals] > Out[4]= 25*(2 + Cos[v]) > or insert "(#/Sqrt[#.#])&@" (without quotes) just before "Cross" in the > above definition. > > Peter > > > > -- DrBob at bigfoot.com
- References:
- Re: Surface Normal
- From: Peter Pein <petsie@arcor.de>
- Re: Surface Normal