symbolic quaternionic analysis

• To: mathgroup at smc.vnet.net
• Subject: [mg55480] symbolic quaternionic analysis
• From: danieldaniel at gmail.com (Daniel Alayon Solarz)
• Date: Fri, 25 Mar 2005 05:48:21 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```Hi,

At the end of this message is my code to handle what the title refers to.

I have two questions,

1) is there any other? and
2) I am interested in functional analysis, is Mathematica capable of handle that?

<< Calculus`VectorAnalysis`

p[t_, x_, y_, z_] := {t, {x, y, z}}
m[p[t1_, x1_, y1_, z1_],
p[t2_, x2_, y2_, z2_]] := {t1*t2 - Dot[{x1, y1, z1}, {x2, y2, z2}],
t1*{x2, y2, z2} + t2*{x1, y1, z1} + Cross[{x1, y1, z1}, {x2, y2, z2}]}
Pwr[p[t_, x_, y_, z_], 0] := { 1, {0, 0, 0}}
Pwr[p[t_, x_, y_, z_], 1] := p[t, x, y, z]
Pwr[p[t_, x_, y_, z_], n_] := m[Pwr[p[t, x, y, z], n - 1], p[t, x, y, z]]
RFueter[{a_, {b_, c_, d_}}] :=
m[D[{a, {b, c, d}}, t], p[1, 0, 0, 0]] +
m[D[{a, {b, c, d}}, x], p[0, 1, 0, 0]] +
m[D[{a, {b, c, d}}, y], p[0, 0, 1, 0]] +
m[D[{a, {b, c, d}}, z], p[0, 0, 0, 1]]
LFueter[{a_, {b_, c_, d_}}] :=
m[p[1, 0, 0, 0], D[{a, {b, c, d}}, t]] +
m[p[0, 1, 0, 0], D[{a, {b, c, d}}, x]] +
m[p[0, 0, 1, 0], D[{a, {b, c, d}}, y]] +
m[p[0, 0, 0, 1], D[{a, {b, c, d}}, z]]

```

• Prev by Date: Re: FindFit & restricting fitting parameter
• Next by Date: Re: Hypergeometric integral looks wrong ?
• Previous by thread: Re: Upgrading to v5.1?
• Next by thread: Re: symbolic quaternionic analysis