symbolic quaternionic analysis
- To: mathgroup at smc.vnet.net
- Subject: [mg55480] symbolic quaternionic analysis
- From: danieldaniel at gmail.com (Daniel Alayon Solarz)
- Date: Fri, 25 Mar 2005 05:48:21 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hi, At the end of this message is my code to handle what the title refers to. I have two questions, 1) is there any other? and 2) I am interested in functional analysis, is Mathematica capable of handle that? << Calculus`VectorAnalysis` p[t_, x_, y_, z_] := {t, {x, y, z}} m[p[t1_, x1_, y1_, z1_], p[t2_, x2_, y2_, z2_]] := {t1*t2 - Dot[{x1, y1, z1}, {x2, y2, z2}], t1*{x2, y2, z2} + t2*{x1, y1, z1} + Cross[{x1, y1, z1}, {x2, y2, z2}]} Pwr[p[t_, x_, y_, z_], 0] := { 1, {0, 0, 0}} Pwr[p[t_, x_, y_, z_], 1] := p[t, x, y, z] Pwr[p[t_, x_, y_, z_], n_] := m[Pwr[p[t, x, y, z], n - 1], p[t, x, y, z]] RFueter[{a_, {b_, c_, d_}}] := m[D[{a, {b, c, d}}, t], p[1, 0, 0, 0]] + m[D[{a, {b, c, d}}, x], p[0, 1, 0, 0]] + m[D[{a, {b, c, d}}, y], p[0, 0, 1, 0]] + m[D[{a, {b, c, d}}, z], p[0, 0, 0, 1]] LFueter[{a_, {b_, c_, d_}}] := m[p[1, 0, 0, 0], D[{a, {b, c, d}}, t]] + m[p[0, 1, 0, 0], D[{a, {b, c, d}}, x]] + m[p[0, 0, 1, 0], D[{a, {b, c, d}}, y]] + m[p[0, 0, 0, 1], D[{a, {b, c, d}}, z]]