Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: symbolic quaternionic analysis

  • To: mathgroup at smc.vnet.net
  • Subject: [mg55571] Re: symbolic quaternionic analysis
  • From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
  • Date: Wed, 30 Mar 2005 03:21:03 -0500 (EST)
  • Organization: Uni Leipzig
  • References: <d20r0d$bad$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

what may
<<Algebra`Quaternions`

do ?

The VectorAnalysis package is for 3d coordinate 
systems and

will propbably not work without additional coding.

Regards

  Jens

"Daniel Alayon Solarz" <danieldaniel at gmail.com> 
schrieb im Newsbeitrag 
news:d20r0d$bad$1 at smc.vnet.net...
> Hi,
>
> At the end of this message is my code to handle 
> what the title refers to.
>
> I have two questions,
>
> 1) is there any other? and
> 2) I am interested in functional analysis, is 
> Mathematica capable of handle that?
>
> << Calculus`VectorAnalysis`
>
> p[t_, x_, y_, z_] := {t, {x, y, z}}
> m[p[t1_, x1_, y1_, z1_],
>    p[t2_, x2_, y2_, z2_]] := {t1*t2 - Dot[{x1, 
> y1, z1}, {x2, y2, z2}],
>    t1*{x2, y2, z2} + t2*{x1, y1, z1} + 
> Cross[{x1, y1, z1}, {x2, y2, z2}]}
> Pwr[p[t_, x_, y_, z_], 0] := { 1, {0, 0, 0}}
> Pwr[p[t_, x_, y_, z_], 1] := p[t, x, y, z]
> Pwr[p[t_, x_, y_, z_], n_] := m[Pwr[p[t, x, y, 
> z], n - 1], p[t, x, y, z]]
> RFueter[{a_, {b_, c_, d_}}] :=
>  m[D[{a, {b, c, d}}, t], p[1, 0, 0, 0]] +
>    m[D[{a, {b, c, d}}, x], p[0, 1, 0, 0]] +
>    m[D[{a, {b, c, d}}, y], p[0, 0, 1, 0]] +
>    m[D[{a, {b, c, d}}, z], p[0, 0, 0, 1]]
> LFueter[{a_, {b_, c_, d_}}] :=
>  m[p[1, 0, 0, 0], D[{a, {b, c, d}}, t]] +
>    m[p[0, 1, 0, 0], D[{a, {b, c, d}}, x]] +
>    m[p[0, 0, 1, 0], D[{a, {b, c, d}}, y]] +
>    m[p[0, 0, 0, 1], D[{a, {b, c, d}}, z]]
> 



  • Prev by Date: Re: Position function
  • Next by Date: Re: Position function
  • Previous by thread: symbolic quaternionic analysis
  • Next by thread: Re: symbolic quaternionic analysis