Re: symbolic quaternionic analysis

• To: mathgroup at smc.vnet.net
• Subject: [mg55571] Re: symbolic quaternionic analysis
• From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
• Date: Wed, 30 Mar 2005 03:21:03 -0500 (EST)
• Organization: Uni Leipzig
• Sender: owner-wri-mathgroup at wolfram.com

```Hi,

what may
<<Algebra`Quaternions`

do ?

The VectorAnalysis package is for 3d coordinate
systems and

will propbably not work without additional coding.

Regards

Jens

"Daniel Alayon Solarz" <danieldaniel at gmail.com>
schrieb im Newsbeitrag
> Hi,
>
> At the end of this message is my code to handle
> what the title refers to.
>
> I have two questions,
>
> 1) is there any other? and
> 2) I am interested in functional analysis, is
> Mathematica capable of handle that?
>
> << Calculus`VectorAnalysis`
>
> p[t_, x_, y_, z_] := {t, {x, y, z}}
> m[p[t1_, x1_, y1_, z1_],
>    p[t2_, x2_, y2_, z2_]] := {t1*t2 - Dot[{x1,
> y1, z1}, {x2, y2, z2}],
>    t1*{x2, y2, z2} + t2*{x1, y1, z1} +
> Cross[{x1, y1, z1}, {x2, y2, z2}]}
> Pwr[p[t_, x_, y_, z_], 0] := { 1, {0, 0, 0}}
> Pwr[p[t_, x_, y_, z_], 1] := p[t, x, y, z]
> Pwr[p[t_, x_, y_, z_], n_] := m[Pwr[p[t, x, y,
> z], n - 1], p[t, x, y, z]]
> RFueter[{a_, {b_, c_, d_}}] :=
>  m[D[{a, {b, c, d}}, t], p[1, 0, 0, 0]] +
>    m[D[{a, {b, c, d}}, x], p[0, 1, 0, 0]] +
>    m[D[{a, {b, c, d}}, y], p[0, 0, 1, 0]] +
>    m[D[{a, {b, c, d}}, z], p[0, 0, 0, 1]]
> LFueter[{a_, {b_, c_, d_}}] :=
>  m[p[1, 0, 0, 0], D[{a, {b, c, d}}, t]] +
>    m[p[0, 1, 0, 0], D[{a, {b, c, d}}, x]] +
>    m[p[0, 0, 1, 0], D[{a, {b, c, d}}, y]] +
>    m[p[0, 0, 0, 1], D[{a, {b, c, d}}, z]]
>

```

• Prev by Date: Re: Position function
• Next by Date: Re: Position function
• Previous by thread: symbolic quaternionic analysis
• Next by thread: Re: symbolic quaternionic analysis