Re: symbolic quaternionic analysis
- To: mathgroup at smc.vnet.net
- Subject: [mg55571] Re: symbolic quaternionic analysis
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Wed, 30 Mar 2005 03:21:03 -0500 (EST)
- Organization: Uni Leipzig
- References: <d20r0d$bad$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, what may <<Algebra`Quaternions` do ? The VectorAnalysis package is for 3d coordinate systems and will propbably not work without additional coding. Regards Jens "Daniel Alayon Solarz" <danieldaniel at gmail.com> schrieb im Newsbeitrag news:d20r0d$bad$1 at smc.vnet.net... > Hi, > > At the end of this message is my code to handle > what the title refers to. > > I have two questions, > > 1) is there any other? and > 2) I am interested in functional analysis, is > Mathematica capable of handle that? > > << Calculus`VectorAnalysis` > > p[t_, x_, y_, z_] := {t, {x, y, z}} > m[p[t1_, x1_, y1_, z1_], > p[t2_, x2_, y2_, z2_]] := {t1*t2 - Dot[{x1, > y1, z1}, {x2, y2, z2}], > t1*{x2, y2, z2} + t2*{x1, y1, z1} + > Cross[{x1, y1, z1}, {x2, y2, z2}]} > Pwr[p[t_, x_, y_, z_], 0] := { 1, {0, 0, 0}} > Pwr[p[t_, x_, y_, z_], 1] := p[t, x, y, z] > Pwr[p[t_, x_, y_, z_], n_] := m[Pwr[p[t, x, y, > z], n - 1], p[t, x, y, z]] > RFueter[{a_, {b_, c_, d_}}] := > m[D[{a, {b, c, d}}, t], p[1, 0, 0, 0]] + > m[D[{a, {b, c, d}}, x], p[0, 1, 0, 0]] + > m[D[{a, {b, c, d}}, y], p[0, 0, 1, 0]] + > m[D[{a, {b, c, d}}, z], p[0, 0, 0, 1]] > LFueter[{a_, {b_, c_, d_}}] := > m[p[1, 0, 0, 0], D[{a, {b, c, d}}, t]] + > m[p[0, 1, 0, 0], D[{a, {b, c, d}}, x]] + > m[p[0, 0, 1, 0], D[{a, {b, c, d}}, y]] + > m[p[0, 0, 0, 1], D[{a, {b, c, d}}, z]] >