Re: NSolve Vs. Elliptic Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg62500] Re: [mg62471] NSolve Vs. Elliptic Integral
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 26 Nov 2005 02:46:56 -0500 (EST)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
NSolve is intended primarily for polynomials (see Help browser). Use FindRoot. Clear[f,g]; f[x_,m_]:=Sqrt[(1+0.176*Sin[m]^2*Sin[x]^2)* (1+1.018*Sin[m]^2*Sin[x]^2)/(1-Sin[m]^2*Sin[x]^2)]; g[m_]:=0.159*Sqrt[1/(-9*10^(-6)+Sin[m]^2)]; FindRoot[ NIntegrate[f[x,m],{x,ArcSin[0.003/Sin[m]],Pi/2}]==g[m], {m,1}] {m -> 0.102762168294469} Plot[{NIntegrate[f[x,m],{x,ArcSin[0.003/Sin[m]],Pi/2}],g[m]}, {m,0.05,.15},PlotStyle->{Blue,Red},Frame->True,Axes->False]; Bob Hanlon > > From: "nilaakash at gmail.com" <nilaakash at gmail.com> To: mathgroup at smc.vnet.net > Date: 2005/11/25 Fri AM 02:25:24 EST > Subject: [mg62500] [mg62471] NSolve Vs. Elliptic Integral > > Dear Friends, > I am facing a problem to NSolve an Elliptic > Integral like that. > > f[x_] := Sqrt[(1 + > 0.176*Sin[m]^2*Sin[x]^2)*(1 + 1.018*Sin[m]^2*Sin[x]^2)/(1 - > Sin[m]^2*Sin[x]^2)] > > g[m] = 0.159*Sqrt[1/(-9*10^(-6) + Sin[m]^2)]; > > NSolve[NIntegrate[f[x], {x, ArcSin[0.003/Sin[m]], Pi/2}] == g[m], m] > > > Here I want to get an "m" value such that integration value = g[m]. > > This NSolve shows problem, please could any body tell me how to get > exact m value. > > Thanks. > > nilaakash > >
- Follow-Ups:
- Re: Re: NSolve Vs. Elliptic Integral
- From: Pratik Desai <pdesai1@umbc.edu>
- Re: Re: NSolve Vs. Elliptic Integral