Re: smooth eigenvalues and eigenvectors as a function of frequency
- To: mathgroup at smc.vnet.net
- Subject: [mg60318] Re: smooth eigenvalues and eigenvectors as a function of frequency
- From: "Antonio Carlos Siqueira" <acsl at dee.ufrj.br>
- Date: Tue, 13 Sep 2005 06:06:52 -0400 (EDT)
- References: <dg05rf$a1u$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Dear Group There were some mistakes in the code I presented here yesterday. Here goes the correct one. Thanks and sorry if this has caused any problem Antonio <<Graphics`Graphics` SetOptions[{LogLinearListPlot,LogLogListPlot},Axes\[Rule]False,Frame\[Rule]\ True,PlotJoined\[Rule] True,ImageSize\[Rule]450,DefaultFont\[Rule]{" Helvetica",14},PlotStyle\[Rule]{AbsoluteThickness[2]}]; xc={-9.5,-9.5,-9.5,9.5,9.5,9.5}; yc={26.,38.7,51.4,26.,38.7,51.4}; ncond=Length[xc]; compr=25*10^3; rf=0.0203454; rhoc=4.169134020401465*^-8; rhosolo=100.0; mu=(4.*Pi)/10^7; epsilon=8.854/10^12; freqlog[i_,f_,n_]:=Table[N[10^(i+(x*(f-i))/(Floor[n]-1))],{x,0,n-1}] length=25000; npontos=20; d1=0;d2=6; ndecadas=d2-d1; nfd=ndecadas*npontos; f=freqlog[d1,d2,nfd]; nf=Length[f]; evalues=Table[0,{n,1,nf}]; evectors=evalues; Do[{w=2*Pi*f[[nm]], p=Sqrt[rhosolo/(I*w*mu)], etac=Sqrt[(I*w*mu)/rhoc], Z=Table[If[iâ? j,((I*w*mu)*Log[ Sqrt[(xc[[i]]-xc[[j]])^2+(2*p+yc[[i]]+yc[[j]])^2]/ Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2]])/(2*Pi), ((etac*rhoc)*BesselI[0,etac*rf])/ ((2*Pi*rf)*BesselI[1,etac*rf])+ ((I*w*mu)*Log[(2*p+2*yc[[i]])/rf])/(2*Pi)], {i,1,ncond},{j,1,ncond}], P=Table[If[iâ? j,Log[Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]+yc[[j]])^2]/ Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2]], Log[(2.*yc[[i]])/rf]], {i,1,ncond},{j,1,ncond}], Y=I*w*2*Pi*epsilon*Inverse[P], {evalues[[nm]],evectors[[nm]]}=Eigensystem[Z.Y]},{nm,1,nf}] DisplayTogether[ LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,1]]]}]], LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,2]]]}]], LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,3]]]}]], LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,4]]]}]],PlotRange\[Rule]All]