Re: conditions of fit parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg65655] Re: conditions of fit parameters
- From: "petitsun1" <r.bactavatchalou at mx.uni-saarland.de>
- Date: Wed, 12 Apr 2006 06:00:05 -0400 (EDT)
- References: <e17fdv$ol2$1@smc.vnet.net><e1aguo$si$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I will try to explain my problem explicitely: I have first the following data:\!\({{10.24`, 12.611`}, {20.48`, 12.595`}, {40.96`, 12.557`}, {81.92`, 12.463`}, {163.84`, 12.234`}, {327.68`, 11.773`}, {655.36`, 11.054`}, {1310.7`, 10.191`}, {2621.4`, 9.3468`}, {5242.9`, 8.6333`}, {10486.`, 8.0744`}, {20972.`, 7.6556`}, {41943.`, 7.3466`}, {83886.`, 7.1146`}, {167770.`, 6.9339`}, {335540.`, 6.7872`}, {671090.`, 6.6575`}, {1.3422`*^6, 6.5308`}, {2.6844`*^6, 6.4072`}, {5.3687`*^6, 6.3103`}, {1.`*^7, 6.1427`}, {1.000001024`*^7, 0.1344`}, {1.000002048`*^7, 0.17804`}, {1.000004096`*^7, 0.29196`}, {1.000008192`*^7, 0.50528`}, {1.000016384`*^7, 0.83546`}, {1.000032768`*^7, 1.2298`}, {1.000065536`*^7, 1.5477`}, {1.00013107`*^7, 1.6657`}, {1.00026214`*^7, 1.5783`}, {1.00052429`*^7, 1.3658`}, {1.0010486`*^7, 1.1128`}, {1.0020972`*^7, 0.87569`}, {1.0041943`*^7, 0.67967`}, {1.0083886`*^7, 0.53152`}, {1.016777`*^7, 0.42835`}, {1.033554`*^7, 0.36402`}, {1.067109`*^7, 0.3308`}, {1.13422`*^7, 0.32231`}, {1.26844`*^7, 0.33302`}, {1.53687`*^7, 0.37133`}, {2.`*^7, 0.47939`}}\) You can see that there are a discontinuity of the data points at 10^7. I have define a function wich is the sum of 2 functions define in differents x -axes, I mean: The mathematica programm is following: Needs["Statistics`Master`"] Needs["Statistics`NonlinearFit`"] Clear[f, Eu, Es, alpha, tau, beta, frmax, fr] frmax = 1*10^7; f1[fr_] := Which[0 <= fr <= frmax, Eu1 + (Es1 - Eu1)*(Cos[ beta1*ArcTan[((2*\[Pi]*fr*tau1)^(1 - alpha1))* Cos[0.5*\[Pi]* alpha1]/(1 + ((2*\[Pi]*fr*tau1)^(1 - alpha1))* Sin[0.5*\[Pi]*alpha1])]]) /((1 + 2*((2*\[Pi]*fr*tau1)^(1 - alpha1))* Sin[0.5*\[Pi]* alpha1] + ((2*\[Pi]*fr* tau1)^(2*(1 - alpha1))))^(beta1/2)) , frmax < fr <= 2*frmax, (Es1 - Eu1)*(Sin[ beta1*ArcTan[((2*\[Pi]*(fr - frmax)*tau1)^(1 - alpha1))* Cos[0.5*\[Pi]* alpha1]/(1 + ((2*\[Pi]*(fr - frmax)*tau1)^(1 - alpha1))*Sin[0.5*\[Pi]*alpha1])]]) /((1 + 2*((2*\[Pi]*(fr - frmax)*tau1)^(1 - alpha1))* Sin[0.5*\[Pi]* alpha1] + ((2*\[Pi]*(fr - frmax)* tau1)^(2*(1 - alpha1))))^(beta1/2))] (*f2[fr_] := Which[0 <= fr <= frmax, Eu2 + (Es2 - Eu2)*(Cos[ beta2*ArcTan[((2*\[Pi]*fr*tau2)^(1alpha2))* Cos[0.5*\[Pi]* alpha2]/(1 + ((2*\[Pi]*fr*tau2)^(1 - alpha2))* Sin[0.5*\[Pi]*alpha2])]]) /((1 + 2*((2*\[Pi]*fr*tau2)^(1 - alpha2))* Sin[0.5*\[Pi]* alpha2] + ((2*\[Pi]*fr* tau2)^(2*(1 - alpha2))))^(beta2/2)) , frmax < fr <= 2*frmax, (Es2 - Eu2)*(Sin[ beta2*ArcTan[((2*\[Pi]*(fr - frmax)*tau2)^(1 - alpha2))* Cos[0.5*\[Pi]* alpha2]/(1 + ((2*\[Pi]*(fr - frmax)*tau2)^(1 - alpha2))*Sin[0.5*\[Pi]*alpha2])]]) /((1 + 2*((2*\[Pi]*(fr - frmax)*tau2)^(1 - alpha2))* Sin[0.5*\[Pi]* alpha2] + ((2*\[Pi]*(fr - frmax)* tau2)^(2*(1 - alpha2))))^(beta2/2))] *) f[fr_] := f1[fr] p1 = ListPlot[t1, PlotStyle -> {PointSize[.02], RGBColor[0, 0, 1]}] lsg = NonlinearRegress[ t1, f[fr], fr, {{Eu1, 12.6}, {Es1, 6.6}, {alpha1, 0.5}, {beta1, 0.4}, {tau1, 0.0003}}, MaxIterations -> 300, RegressionReport -> {BestFit, FitResiduals, ParameterTable, AsymptoticCorrelationMatrix, FitCurvatureTable}, ShowProgress -> True] As you can see, first I have define the fnction which is a sum of function define in different x-domain. After, I would like to fit it with NonLinearRegress. The Problem is that I can´t give range of the parameters which I need to help him to fit the data points. If you have some idea of what i can do to solve my problem, it will be helpul.. Thanks a lot, Ravi