Re: Reaction-diffusion PDEs
- To: mathgroup at smc.vnet.net
- Subject: [mg65676] Re: [mg65660] Reaction-diffusion PDEs
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 13 Apr 2006 02:19:52 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
soln=NDSolve[{ D[u[x,t],t]==0.6u[x,t]-v[x,t]- u[x,t]^3+0.0002D[u[x,t],{x,2}], D[v[x,t],t]==1.5u[x,t]-2v[x,t]+ 0.01D[v[x,t],{x,2}], u[x,0]==Sin[2Pi*x], v[x,0]==Sin[4Pi*x], u[0,t]==0,v[0,t]==0, u[1,t]==0,v[1,t]==0}, {u[x,t],v[x,t]}, {x,0,1},{t,0,30},MaxStepSize->0.01][[1]]; Plot3D[Evaluate[u[x,t]/.soln],{x,0,1},{t,0,30}]; Plot3D[Evaluate[v[x,t]/.soln],{x,0,1},{t,0,30}]; Bob Hanlon > > From: Skirmantas <skirmantas.janusonis at yale.edu> To: mathgroup at smc.vnet.net > Subject: [mg65676] [mg65660] Reaction-diffusion PDEs > > Hello, > > I'd like to numerically solve the following reaction-diffusion system: > > {D[u[x,t],t]==0.6u[x,t]-v[x,t]-u[x,t]^3+0.0002D[u[x,t],x,x], D[v[x,t],t] ==1.5u[x,t]-2v[x,t]+0.01D[v[x,t],x,x], u[x,0]==Sin[2*Pi*x], v[x,0]==Sin [4*Pi*x]}, where 0<=x<=1, 0<=t<=30, assuming zero-flux boundary conditions (at x=0 and x=1). I can set up my own discretization and iteration with the For operator, but I suspect NDSolve may be able to to do it automatically. I'd appreciate any advice. > > Skirmantas > >