MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

more complex Hadamard-Sylvester Matric Self -Similar constructions


I had this idea last night as the next Pisot level of complexity
for these self-similar matrices.
The Padovan/ Minmal Pisot matrix in the substitution-repartition 
procedure gives a
dust like fractal at second level 81by81 .
I haven't attempted the third level 81^2by81^2 construction.

Clear[t, M, a, v, a0, aa]
t[n_, m_] := {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}[[n, m]]
a0 = Table[t[n, m]*t[i, j], {n, 1, 3}, {m, 1, 3}, {i, 1, 3}, {j, 1, 3}];
M = Flatten[Table[{Flatten[Table[a0[[
      n, m]][[1, i]], {n,
           1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[2,
            i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[3,
            i]], {n, 1, 3}, {i, 1, 3}]]}, {m, 1, 3}], 1]
MatrixForm[M]
ListDensityPlot[M, Mesh -> False]
aa = Table[M[[n, m]]*M[[i, j]], {n, 1, 9 }, {m, 1, 9}, {i, 1, 9}, {j, 1, 
9}];
M2 = Flatten[Table[{Flatten[Table[aa[[
      n, m]][[1, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[2,
            i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[3, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[4, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[5, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[6,
            i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[7, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[8, i]], {n,
           1, 9}, {i, 1, 9}]], Flatten[Table[aa[[
      n, m]][[9, i]], {n,
           1, 9}, {i, 1, 9}]]}, {m, 1, 9}], 1];
ListDensityPlot[M2, Mesh -> False]


  • Prev by Date: Re: ContourPlot and finite approximation to level sets
  • Next by Date: Sequences from chemical structures as Hadamard self-similar matrices
  • Previous by thread: Re: simple question
  • Next by thread: Sequences from chemical structures as Hadamard self-similar matrices