Re: Re: too many special linear matrices

*To*: mathgroup at smc.vnet.net*Subject*: [mg68800] Re: [mg68765] Re: too many special linear matrices*From*: Andrzej Kozlowski <akoz at mimuw.edu.pl>*Date*: Sat, 19 Aug 2006 00:41:03 -0400 (EDT)*References*: <200608160736.DAA06175@smc.vnet.net> <CE14B3F1-9562-4363-9D03-D37E82CF28FB@mimuw.edu.pl> <ec1amo$os1$1@smc.vnet.net> <200608180712.DAA02032@smc.vnet.net>*Sender*: owner-wri-mathgroup at wolfram.com

On 18 Aug 2006, at 09:12, Roger Bagula wrote: > Andrzej Kozlowski wrote: > >> The code below will produce the list of elements of SL[n,p] (as long >> as n and p are not too large): >> >> SL[n_, p_] := Module[{vars = >> Table[Unique[ >> a], {n^2}], iters, mat}, iters = Map[{#, 0, p - 1} &, vars]; >> mat = >> Partition[vars, n]; Reap[ >> Do[If[Det[mat, >> Modulus -> p] == 1, Sow[mat], Continue[]], Evaluate[Sequence @@ >> iters]]][[2, 1]]] >> >> >> For n=2 it gives the lengths: >> >> >> Table[Length[SL[2,Prime[i]]],{i,1,7}] >> >> >> {6,24,120,336,1320,2184,4896} >> >> which agree with the formula I sent earlier: >> >> In[16]:= >> Table[f[2,Prime[i]],{i,1,7}] >> >> Out[16]= >> {6,24,120,336,1320,2184,4896} >> >> Andrzej Kozlowski >> >> >> >> > Andrzej Kozlowski, > You give the correct anwers in this post, but > your code doesn't run in my 5.1 version. > Roger Bagula > If really so, then it is very strange because my version is: $Version 5.1 for Mac OS X (October 25, 2004) and in my case the code does run, .e.g. SL[2,2] {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}} Length[%] 6 Andrzej Kozlowski

**References**:**too many special linear matrices***From:*Roger Bagula <rlbagula@sbcglobal.net>

**Re: too many special linear matrices***From:*Roger Bagula <rlbagula@sbcglobal.net>