Re: Symmetric polynomials
- To: mathgroup at smc.vnet.net
- Subject: [mg69002] Re: [mg68940] Symmetric polynomials
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Sat, 26 Aug 2006 02:04:48 -0400 (EDT)
- References: <200608250934.FAA09161@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
On 25 Aug 2006, at 11:34, shubi at nusun.jinr.ru wrote: > Dear All, > > Is the possibility in "Mathematica" express symmetric functions, > for > example: > > P=y1^2 y2 y3 + y1 y2^2 y3 + y1 y2 y3^2 + y1^2 y2 y4 + > y1 y2^2 y4 + y1^2 y3 y4 + y2^2 y3 y4 + y1 y3^2 y4 + > y2 y3^2 y4 + y1 y2 y4^2 + y1 y3 y4^2 + y2 y3 y4^2; > > by the standard symmetric polynomials: > S1=y1+y2+y3+y4; > S2=y1^2+y2^2+y3^2+y4^2; > S3=y1^3+y2^3+y3^3+y4^3; > . . . > > Best regards > Nodar Shubitidze > Joint Institute for Nuclear Research > Dubna, Moscow region, Russia > You can do it as follows. P = y1^2 y2 y3 + y1 y2^2 y3 + y1 y2 y3^2 + y1^2 y2 y4 + y1 y2^2 y4 + y1^2 y3 y4 + y2^2 y3 y4 + y1 y3^2 y4 + y2 y3^2 y4 + y1 y2 y4^2 + y1 y3 y4^2 + y2 y3 y4^2; s[i_] := y1^i + y2^i + y3^i + y4^i ideal = Table[S[i] - s[i], {i, 1, 4}]; vars = Join[{y1, y2, y3, y4}, Table[S[i], {i, 1, 4}]]; g = GroebnerBasis[ideal, vars, MonomialOrder -> EliminationOrder]; Now your polynomial is given by: p = PolynomialReduce[P, g, vars][[2]] (1/2)*S[2]*S[1]^2 - S[3]*S[1] - S[2]^2/2 + S[4] where S[1], S[2], S[3] and S[4] are your S1, S2 ... Checking: ExpandAll[p /. S[i_] -> s[i]] == P True Andrzej Kozlowski
- References:
- Symmetric polynomials
- From: shubi@nusun.jinr.ru
- Symmetric polynomials