Re: Symmetric polynomials
- To: mathgroup at smc.vnet.net
- Subject: [mg68994] Re: [mg68940] Symmetric polynomials
- From: "Carl K. Woll" <carlw at wolfram.com>
- Date: Sat, 26 Aug 2006 02:04:33 -0400 (EDT)
- References: <200608250934.FAA09161@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
shubi at nusun.jinr.ru wrote: > Dear All, > > Is the possibility in "Mathematica" express symmetric functions, for > example: > > P=y1^2 y2 y3 + y1 y2^2 y3 + y1 y2 y3^2 + y1^2 y2 y4 + > y1 y2^2 y4 + y1^2 y3 y4 + y2^2 y3 y4 + y1 y3^2 y4 + > y2 y3^2 y4 + y1 y2 y4^2 + y1 y3 y4^2 + y2 y3 y4^2; > > by the standard symmetric polynomials: > S1=y1+y2+y3+y4; > S2=y1^2+y2^2+y3^2+y4^2; > S3=y1^3+y2^3+y3^3+y4^3; > . . . > > Best regards > Nodar Shubitidze > Joint Institute for Nuclear Research > Dubna, Moscow region, Russia Load the package: Needs["Algebra`SymmetricPolynomials`"] Then, use SymmetricReduction: In[3]:= SymmetricReduction[P,{y1,y2,y3,y4},{s1,s2,s3,s4}] Out[3]= {s1 s3-4 s4,0} The second argument 0 indicates that P is symmetric, i.e., there is no nonsymmetric piece left over. Carl Woll Wolfram Research
- References:
- Symmetric polynomials
- From: shubi@nusun.jinr.ru
- Symmetric polynomials