Re: Symmetric polynomials
- To: mathgroup at smc.vnet.net
- Subject: [mg69012] Re: [mg68940] Symmetric polynomials
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 26 Aug 2006 02:05:00 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Algebra`SymmetricPolynomials`"]; P=y1^2 y2 y3+y1 y2^2 y3+y1 y2 y3^2+ y1^2 y2 y4+y1 y2^2 y4+y1^2 y3 y4+ y2^2 y3 y4+y1 y3^2 y4+y2 y3^2 y4+ y1 y2 y4^2+y1 y3 y4^2+y2 y3 y4^2; var=Union[Cases[P,_Symbol,Infinity]] {y1,y2,y3,y4} s=Table[ToExpression["s"<>ToString[n]],{n,Length[var]}] {s1,s2,s3,s4} ps=SymmetricReduction[P,var,s][[1]] s1 s3-4 s4 S=Table[ToExpression["S"<>ToString[n]],{n,Length[var]}] {S1,S2,S3,S4} eqns=Thread[S==( SymmetricReduction[#,var,s][[1]]&/@ Table[Total[var^n],{n,4}])] {S1 == s1, S2 == s1^2 - 2*s2, S3 == s1^3 - 3*s2*s1 + 3*s3, S4 == s1^4 - 4*s2*s1^2 + 4*s3*s1 + 2*s2^2 - 4*s4} Simplify[ps/.Solve[eqns,s][[1]]] (S2*S1^2)/2 - S3*S1 - S2^2/2 + S4 Simplify[P==(%/.Thread[S->Table[Total[var^n],{n,4}]])] True Bob Hanlon ---- shubi at nusun.jinr.ru wrote: > Dear All, > > Is the possibility in "Mathematica" express symmetric functions, for > example: > > P=y1^2 y2 y3 + y1 y2^2 y3 + y1 y2 y3^2 + y1^2 y2 y4 + > y1 y2^2 y4 + y1^2 y3 y4 + y2^2 y3 y4 + y1 y3^2 y4 + > y2 y3^2 y4 + y1 y2 y4^2 + y1 y3 y4^2 + y2 y3 y4^2; > > by the standard symmetric polynomials: > S1=y1+y2+y3+y4; > S2=y1^2+y2^2+y3^2+y4^2; > S3=y1^3+y2^3+y3^3+y4^3; > . . . > > Best regards > Nodar Shubitidze > Joint Institute for Nuclear Research > Dubna, Moscow region, Russia >