integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg72364] integrate
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 26 Dec 2006 08:31:19 -0500 (EST)
Integrate[(BesselJ[0, x]*Log[x])/Sqrt[1 + x^2], {x, 1, Infinity}] Integrate[(BesselJ[0, x]*Log[x])/Sqrt[1 + x^2], {x, 1, Infinity}] NIntegrate[(BesselJ[0, x]*Log[x])/Sqrt[1 + x^2], {x, 1, Infinity}, Method -> Oscillatory] -0.06630573213061997 Integrate[(BesselK[0, x]*BesselY[1, x])/Sqrt[1 + x^2], {x, 1, Infinity}] Integrate[(BesselK[0, x]*BesselY[1, x])/Sqrt[1 + x^2], {x, 1, Infinity}] NIntegrate[(BesselK[0, x]*BesselY[1, x])/Sqrt[1 + x^2], {x, 1, Infinity}] -0.06586252709607003 -------> Any possibility to get closed form results within Mathematica? Integrate[Sqrt[x^2 + 1]/Sqrt[1 + x^6], {x, 0, 10}] (-(-1)^(1/6))*EllipticF[I*ArcSinh[10*(-1)^(1/3)], (-1)^(2/3)] N[%] -0.10016641038463325 - 1.6857503548125956*I NIntegrate[Sqrt[x^2 + 1]/Sqrt[1 + x^6], {x, 0, 10}] 2.056349237110889 --------> Any ideas to "help" Mathematica to give a correct answer? Regards Dimitris