[resend] large input to NMinimize causes NMinimize:"bcons" along with Less:nord ... and I don't think it should
- To: mathgroup at smc.vnet.net
- Subject: [mg72412] [resend] large input to NMinimize causes NMinimize:"bcons" along with Less:nord ... and I don't think it should
- From: "Chris Chiasson" <chris at chiasson.name>
- Date: Wed, 27 Dec 2006 05:06:59 -0500 (EST)
- References: <acbec1a40612222206j4487908drc5d40e8e07900912@mail.gmail.com>
I am resending this message from the 23rd because it did not appear on comp.soft-sys.math.mathematica even after the recent batch of reposts: of course, I've been wrong plenty of times before: the Piecewise statements in the input (before a replacement for and application of Simplify) looked like Piecewise[{{y,Im[y]==0&&y<h[i]/2}},h[i]/2] so, I believe NMinimize is doing some kind of optimization that changes evaluation order when it emits Less::nord: Invalid comparison with 0.+24.351659151792298` I attempted. In addition, NMinimize:"bcons" says that my constraints aren't equalities, inequalities, or domain specifications, but I can't see what is wrong. It is worth noting that Method->"DifferentialEvolution" will produce an answer and not complain about the constraints, but it is really the wrong type of method for this problem (I need one that is derivative based). Would someone mind telling me what is producing the Less:nord errors and why NMinimize can't make up its mind about whether I've given proper constraints? here is the input: NMinimize[{b[1]*h[1] + b[2]*h[2] + b[3]*h[3] + b[4]*h[4] + b[5]*h[5], -1 + Sqrt[(9000000000000*Piecewise[{{Sqrt[-200/3 + h[1]^2]/2, Im[Sqrt[-200 + 3*h[1]^2]] == 0 && Sqrt[-600 + 9*h[1]^2] < 3*h[1]}}, h[1]/2]^2)/(b[1]^2*h[1]^6) + (16875000000*(h[1]^2 - 4*Piecewise[{{Sqrt[-200/3 + h[1]^2]/2, Im[Sqrt[-200 + 3*h[1]^2]] == 0 && Sqrt[-600 + 9*h[1]^2] < 3*h[1]}}, h[1]/2]^2)^2)/(b[1]^2*h[1]^6)]/140000000 <= 0 && -1 + Sqrt[(5.759999999712*^12*Piecewise[{{Sqrt[-42.66666666453333 + h[2]^2]/2, Im[Sqrt[-127.9999999936 + 3*h[2]^2]] == 0 && Sqrt[-383.9999999808 + 9*h[2]^2] < 3*h[2]}}, h[2]/2]^2)/ (b[2]^2*h[2]^6) + (16875000000*(h[2]^2 - 4*Piecewise[{{Sqrt[-42.66666666453333 + h[2]^2]/2, Im[Sqrt[-127.9999999936 + 3*h[2]^2]] == 0 && Sqrt[-383.9999999808 + 9*h[2]^2] < 3*h[2]}}, h[2]/2]^2)^ 2)/(b[2]^2*h[2]^6)]/140000000 <= 0 && -1 + Sqrt[(3.239999999784*^12*Piecewise[{{Sqrt[-23.9999999984 + h[3]^2]/2, Im[Sqrt[-71.9999999952 + 3*h[3]^2]] == 0 && Sqrt[-215.9999999856 + 9*h[3]^2] < 3*h[3]}}, h[3]/2]^2)/(b[3]^2*h[3]^6) + (16875000000*(h[3]^2 - 4*Piecewise[{{Sqrt[-23.9999999984 + h[3]^2]/2, Im[Sqrt[-71.9999999952 + 3*h[3]^2]] == 0 && Sqrt[-215.9999999856 + 9*h[3]^2] < 3*h[3]}}, h[3]/2]^2)^2)/(b[3]^2*h[3]^6)]/140000000 <= 0 && -1 + Sqrt[(1.439999999856*^12*Piecewise[{{Sqrt[-10.6666666656 + h[4]^2]/2, Im[Sqrt[-31.9999999968 + 3*h[4]^2]] == 0 && Sqrt[-95.9999999904 + 9*h[4]^2] < 3*h[4]}}, h[4]/2]^2)/(b[4]^2*h[4]^6) + (16875000000*(h[4]^2 - 4*Piecewise[{{Sqrt[-10.6666666656 + h[4]^2]/2, Im[Sqrt[-31.9999999968 + 3*h[4]^2]] == 0 && Sqrt[-95.9999999904 + 9*h[4]^2] < 3*h[4]}}, h[4]/2]^2)^2)/(b[4]^2*h[4]^6)]/140000000 <= 0 && -1 + Sqrt[(3.59999999928*^11*Piecewise[{{Sqrt[-2.666666666133333 + h[5]^2]/2, Im[Sqrt[-7.9999999984 + 3*h[5]^2]] == 0 && Sqrt[-23.9999999952 + 9*h[5]^2] < 3*h[5]}}, h[5]/2]^2)/(b[5]^2*h[5]^6) + (16875000000*(h[5]^2 - 4*Piecewise[{{Sqrt[-2.666666666133333 + h[5]^2]/2, Im[Sqrt[-7.9999999984 + 3*h[5]^2]] == 0 && Sqrt[-23.9999999952 + 9*h[5]^2] < 3*h[5]}}, h[5]/2]^2)^2)/ (b[5]^2*h[5]^6)]/140000000 <= 0 && -1 + (3*Sqrt[3]*Sqrt[(h[5]^2 - 4*Piecewise[{{Sqrt[h[5]^2]/2, Sqrt[3]*Im[Sqrt[h[5]^2]] == 0 && 3*Sqrt[h[5]^2] < 3*h[5]}}, h[5]/2]^2)^2/(b[5]^2*h[5]^6)])/5600 <= 0 && -20*b[1] + h[1] <= 0 && -20*b[2] + h[2] <= 0 && -20*b[3] + h[3] <= 0 && -20*b[4] + h[4] <= 0 && -20*b[5] + h[5] <= 0 && -1 + 0.025/Abs[2.5*^-12*(-5400000/(b[1]*h[1]^3) - 4200000/(b[2]*h[2]^3) - 3000000/(b[3]*h[3]^3) - 1800000/(b[4]*h[4]^3)) + 8.333333333333333*^-13*(-8400000/(b[1]*h[1]^3) + (12*(-550000 - (1350000*b[2]*h[2]^3)/(b[1]*h[1]^3)))/(b[2]*h[2]^3) + (12*(-400000 + (b[3]*(-5400000/(b[1]*h[1]^3) - 4200000/(b[2]*h[2]^3))*h[3]^3)/4))/(b[3]*h[3]^3) + (12*(-250000 + (b[4]*(-5400000/(b[1]*h[1]^3) - 4200000/(b[2]*h[2]^3) - 3000000/(b[3]*h[3]^3))*h[4]^3)/4))/ (b[4]*h[4]^3)) - 1.*^-6/(b[5]*h[5]^3)] <= 0 && 1/100 - b[1] <= 0 && 1/20 - h[1] <= 0 && 1/100 - b[2] <= 0 && 1/20 - h[2] <= 0 && 1/100 - b[3] <= 0 && 1/20 - h[3] <= 0 && 1/100 - b[4] <= 0 && 1/20 - h[4] <= 0 && 1/100 - b[5] <= 0 && 1/20 - h[5] <= 0}, {b[1], b[2], b[3], b[4], b[5], h[1], h[2], h[3], h[4], h[5]}] -- http://chris.chiasson.name/