Re: Trigonometric form of complex numbers

*To*: mathgroup at smc.vnet.net*Subject*: [mg64224] Re: Trigonometric form of complex numbers*From*: Peter Pein <petsie at dordos.net>*Date*: Tue, 7 Feb 2006 03:35:50 -0500 (EST)*References*: <drus5c$fok$1@smc.vnet.net> <ds1s0r$fni$1@smc.vnet.net>*Sender*: owner-wri-mathgroup at wolfram.com

ivan.svaljek at gmail.com schrieb: > I'm looking for a solution that would produce something like this: > r (cos f + i sin f). > > And would return n roots of a complex number in such form. > > Mathematica itself does nothing to return roots of complex numbers. Am > I wrong ? > Sth. like In[1]:= ComplexExpand[(-1)^(1/n)] Out[1]= Cos[Pi/n] + I*Sin[Pi/n] or In[2]:= NSolve[x^5 == 1, x] Out[2]= {{x -> -0.8090169943749475 - 0.5877852522924731*I}, {x -> -0.8090169943749475 + 0.5877852522924731*I}, {x -> 0.30901699437494745 - 0.9510565162951536*I}, {x -> 0.30901699437494745 + 0.9510565162951536*I}, {x -> 1.}} ??