Re: A beginer's simple question about Mathematica...
- To: mathgroup at smc.vnet.net
- Subject: [mg63561] Re: A beginer's simple question about Mathematica...
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 5 Jan 2006 03:12:32 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <dpg11e$pm4$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
leelsuc at yahoo.com wrote: > I try to run > > Integrate[x*Exp[-((x-2*a)^2/(8*a)+(y-b)^2/(2*b)+(z*x-y-c)^2/(2*c))],{x,-\[infinity],0},{y,-\[infinity],+\[infinity]}] > > get > > \!\(\(\(1\/\@\(1\/b + > 1\/c\)\)\((\@\(2\ p\)\ If[Re[z] > \(-\(1\/2\)\) && Re[\(b + c + > 4\ a\ z\ > \^2\)\/\(8\ a\ b + > 8\ a\ c\)] > > 0, \(-\(\(2\ \[ExponentialE]\^\(1\/2\ \((\(-a\) - b - > \ > c)\)\)\ \((\(-\[ExponentialE]\^\(\(a\ \((b + c)\)\ \((1 + 2\ > z)\)\^2\)\/\(2\ \ > \((b + c + 4\ > a\ z\^2)\)\)\)\)\ \@\(2\ p\)\ \((1 + 2\ z)\) + 2\ > \@\(\(b + c \ > + 4\ a\ z\^2\)\/\(a\ b + a\ c\)\) + \[ExponentialE]\^\(\(a\ \((b + > c)\)\ \((1 \ > + 2\ z)\)\^2\)\/\(2\ \((b + c + 4\ a\ z\^2)\)\)\)\ \@\(2\ p\)\ \((1 + > 2\ z)\)\ > \ Erf[\(1 + 2\ z\)\/\(\@2\ \@\(\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\ \ > c\)\)\)])\)\)\/\((\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\ > c\))\)\^\(3/2\)\)\), > Integrate[\(-\[ExponentialE]\^\(-\(\(4\ a\^2\ \((b > + c)\) \ > + \((b + c)\)\ x\^2 + 4\ a\ \((b\^2 + c\^2 + > x\^2\ z\^2 - c\ \((\(-x\) - 2\ x\ z)\) + b\ \((2\ c > + x\ \ > \((1 + 2\ z)\))\))\)\)\/\(8\ a\ \((b + c)\)\)\)\)\)\ x, {x, 0, 8}, \ > Assumptions -> Re[z] = \(-\(1\/2\)\) || \((Re[z] > \(-\(1\/2\)\) && > Re[\(b + \ > c + 4\ a\ z\^2\)\/\(8\ a\ b + 8\ a\ c\)] = 0)\)]])\)\)\) > > > What does this result mean? Have a look at http://documents.wolfram.com/mathematica/Built-inFunctions/NumericalComputation/Integration/FurtherExamples/Integrate.html Basically, what is returned in this case is a conditional result since the value of the integral depends on the values of several parameters. 1 b + c + 4 a z If Re[z] > -(-) && Re[--------------] > 0 then the integral is equal to 2 8 a b + 8 a c 1 ----------- Sqrt[2 Pi] 1 1 Sqrt[- + -] b c otherwise, it is equal to whatever expression is between the comma after the if statement and the closing parentheses, times the common factor 1/Sqrt[1/b + 1/c] EXCEPT if 1 1 b + c + 4 a z Re[z] <= -(-) OR (Re[z] > -(-) AND Re[--------------] <= 0) 2 2 8 a b + 8 a c since in this case Mathematica do not knoe how to compute this integral. In[1]:= Integrate[x*Exp[-((x - 2*a)^2/(8*a) + (y - b)^2/(2*b) + (z*x - y - c)^2/(2*c))], {x, -Infinity, 0}, {y, -Infinity, Infinity}] Out[1]= 2 1 1 b + c + 4 a z ----------- (Sqrt[2 Pi] If[Re[z] > -(-) && Re[--------------] > 0, 1 1 2 8 a b + 8 a c Sqrt[- + -] b c 1 1/2 (-a - b - c) -(------------------- (2 E 2 b + c + 4 a z 3/2 (--------------) a b + a c 2 2 (a (b + c) (1 + 2 z) )/(2 (b + c + 4 a z )) (-E Sqrt[2 Pi] (1 + 2 z) + 2 2 2 b + c + 4 a z (a (b + c) (1 + 2 z) )/(2 (b + c + 4 a z )) 2 Sqrt[--------------] + E Sqrt[2 Pi] a b + a c 1 + 2 z (1 + 2 z) Erf[----------------------------]))), 2 b + c + 4 a z Sqrt[2] Sqrt[--------------] a b + a c 2 2 Integrate[-Power[E, -((4 a (b + c) + (b + c) x + 2 2 2 2 4 a (b + c + x z - c (-x - 2 x z) + b (2 c + x (1 + 2 z))))/(8 a (b + c)))] x, 2 1 1 b + c + 4 a z {x, 0, Infinity}, Assumptions -> Re[z] <= -(-) || (Re[z] > -(-) && Re[--------------] <= 0)]] 2 2 8 a b + 8 a c ) Hope this helps, /J.M.