Re: Iterated Function System
- To: mathgroup at smc.vnet.net
- Subject: [mg67706] Re: Iterated Function System
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Wed, 5 Jul 2006 04:17:59 -0400 (EDT)
- References: <e8d0uo$4dk$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Here's one that uises Mark McClure's "DigraphFractals`": it calculates the dimension as well as the fractal for a Rauzy tile: ( I didn't change the base name" terdragonDigraph" that Dr. McClure used!) Solve[x^3-x^2-x-1==0,x] NSolve[x^3-x^2-x-1==0,x] c=-0.419643377607080569 s=-0.606290729207199419 z=c+I*s z^2 c1=-0.19148788395311880508967465797 s1=0.50885177883273803553625813551 z^3 c2=0.38886873843980076415946686483 s2=-0.09743895037446135435716873396 rotate[theta_] := {{Cos[theta], -Sin[theta]}, {Sin[theta], Cos[theta]}}; f = {{{c,-s},{s,c}},{c,s}}; g = {{{c1,-s1},{s1,c1}},{c1,s1}}; h = {{{c2,-s2},{s2,c2}},{c2,s2}}; Needs["DigraphFractals`"]; terdragonDigraph = {{{f, g, h}}} ShowDigraphFractals[terdragonDigraph, 9]; ComputeDimension[terdragonDigraph]