principal value
- To: mathgroup at smc.vnet.net
- Subject: [mg67952] principal value
- From: dimmechan at yahoo.com
- Date: Thu, 13 Jul 2006 06:55:29 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Hi specialists. I have to evaluate the following integral (from an elasticity project) \!\(Integrate[ArcTan[x]\/\(x - p\), {p, 0, 1}, {x, 0, 1}]\). Since p take values in the interval {0,1}, the option PrincipalValue must be used. \!\(Integrate[ArcTan[x]\/\(x - p\), {p, 0, 1}, {x, 0, 1}, PrincipalValue \ \[Rule] True]\) \!\(\*FormBox[ RowBox[{\(1\/32\), " ", RowBox[{"(", RowBox[{ RowBox[{"32", " ", TagBox["C", Function[ {}, Catalan]]}], "+ ", \(4\ \(\(log\^2\)(2)\)\), "-", \(Ï?\ \((Ï? + log(16))\)\)}], ") "}]}], TraditionalForm]\) symb=N[%] 0.395399 I want also to compute previous numerically. To this end, I work as follows: First, Needs["NumericalMath`"] $Version 5.2 for Microsoft Windows (June 20, 2005) \!\(f[x_, p_] := ArcTan[x]\/\(x - p\)\) cauchy1[g_,x_,p_]:=CauchyPrincipalValue[g,{x,0,{p},1}] \!\(\(mat1 = Table[{p, cauchy1[ArcTan[x]\/\(x - p\), x, p]}, {p, 0.0001, 0.9999, 0.0001}];\)\) For p=0 the integral of f[x,p] in the interval 0<=x<=1 converges. Integrate[f[x,0],{x,0,1}] C mat2=N[%] 0.915966 For p=1 the integral of f[x,p] in the interval 0<=x<=1 diverges. Integrate[f[x,1],{x,0,1}] \!\(\*FormBox[ RowBox[{\(Integrate::"idiv"\), \(\(:\)\(\ \)\), "\<\"Integral of \ \\!\\(TraditionalForm\\`\\(\\(\\( tan\\^\\(-1\\)\\)\\)(x)\\)\\/\\(x - 1\\)\\) does not converge on \ \\!\\(TraditionalForm\\`\\({0, 1}\\)\\). \\!\\(\\*ButtonBox[\\\"Moreâ?¦\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"Integrate::idiv\\\"]\\)\"\>"}], TraditionalForm]\) \!\(TraditionalForm\`â?«\_0\%1\(\(\( tan\^\(-1\)\)(x)\)\/\(x - 1\)\) \[DifferentialD]x\) However (in the Hadamard sense) Integrate[f[x,1],{x,0,1},GenerateConditions\[Rule]False] \!\(\*FormBox[ RowBox[{ TagBox["C", Function[ {}, Catalan]], "-", \(1\/8\ Ï?\ \(log(2)\)\)}], TraditionalForm]\) mat3=N[%] 0.643767 So, I consruct a new list: mat4=Insert[mat1,{0,mat2},1]; mat5=Insert[mat4,{1,mat3},Length[mat4+1]]; Then, I use the command to evaluate the integral num=ListIntegrate[mat3, 2] 0.395833 The numerical result is different. What am I loosing something? P.S. Evaluating an integral in the Hadamard sense, is (in most cases) of no cost in elasticity theory. Usually, such "losing" of a singularity, as before in p=1, corresponds to rigid body displacement.