Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2006
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Numerical Integration

  • To: mathgroup at smc.vnet.net
  • Subject: [mg67384] Re: Numerical Integration
  • From: "antononcube" <antononcube at gmail.com>
  • Date: Wed, 21 Jun 2006 02:12:57 -0400 (EDT)
  • References: <e784ps$fr0$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

The second integration fails because FirstIntegration[0.] fails.
FirstIntegration[0.] fails because
the function int[x_,y_] is Indeterminate for int[0,0]. If you specify a
singular point 0 for the second integration it works.


In[8]:= FirstIntegration[0.]

NIntegrate::inum:
               4               2
             -(- - -------------------------)
               3                          2
                   Sqrt[0.01 + (3.2 - kkx) ]
   Integrand -------------------------------- + <<1>> is not numerical
at
                                     2
                   4 (9.6 - 3 kkx) Pi
    {kkx} = {0.}.

                                                   2              2
Out[8]= NIntegrate[int[kkx, 0.], {kkx, -Sqrt[1 - 0. ], Sqrt[1 - 0. ]},

>    MaxRecursion -> 20]

In[9]:= int[0, 0]

                                 1
Power::infy: Infinite expression - encountered.
                                 0

Infinity::indet: Indeterminate expression 0 ComplexInfinity
encountered.

                                 1
Power::infy: Infinite expression - encountered.
                                 0

Infinity::indet: Indeterminate expression 0 ComplexInfinity
encountered.

                                 1
Power::infy: Infinite expression - encountered.
                                 0

General::stop: Further output of Power::infy
     will be suppressed during this calculation.

Infinity::indet: Indeterminate expression 0 ComplexInfinity
encountered.

General::stop: Further output of Infinity::indet
     will be suppressed during this calculation.

Out[9]= Indeterminate

In[10]:= NIntegrate[FirstIntegration[kky], {kky, -1, 0, 1}]

Out[10]= 1.88673 10^-6


Anton Antonov,
Wolfram Research, Inc.


Stefano Chesi wrote:
> Hi,
> I have to calculate a double integral of a function (the definition is
> long and I copy it
> at the end of the mail). I can plot the result of the first integration:
>
> INPUT:
> FirstIntegration[kky_?NumberQ]:=
>
> NIntegrate[int[kkx,kky],{kkx,-Sqrt[1-kky^2],Sqrt[1-kky^2]},MaxRecursion->20]
> Plot[FirstIntegration[kky],{kky,-1,1}]
> OUTPUT: Graphics
>
> But the second integration doesn't work:
>
> INPUT:
> NIntegrate[FirstIntegration[kky],{kky,-1,1}]
> OUTPUT: NIntegrate::inum: .... is not numerical at {kky} = {0.}
> NIntegrate[FirstIntegration[kky],{kky,-1,1}]
>
> The actual code is slightly more complicated, and I need to do the
> integration
> in two different steps (sometimes in the first integration I have poles
> and I need
> to take the principal value), in the way it is coded above.
>
> Thank you very much,
>                                               Stefano
>
>
> Here's the function definition. If  I make it a simple function, e.g. by
> adding " ; kky^2 "
> before the last parenthesis "]", the second integration works. So, I
> don't understand
> what's the problem.
>
> aa=0.1;
>
> kx=0.2;
> ky=0.1;
> q=3;
>
>
> int[kkx_,kky_]:=
>
>   Module[
>
>     {nn,n1,n2,n3,n4,c1,c2,c3,c4,s1,s2,s3,s4},
>
>     nn=Sqrt[(q+kx-kkx)^2+(ky-kky)^2];
>
>     n1=-Sqrt[kx^2+ky^2];
>     n2=Sqrt[(kx+q)^2+ky^2];
>     n3=-Sqrt[kkx^2+kky^2];
>     n4=Sqrt[(kkx-q)^2+kky^2];
>
>     c1=((kx+q)kx+ky ky)/n1/n2;
>     c2=(kkx(kx+q)+kky ky)/n2/n3;
>     c3=((kkx-q)kkx+kky kky)/n3/n4;
>     c4=(kx(kkx-q)+ky kky)/n4/n1;
>
>     s1=(ky kx-(kx+q) ky)/n1/n2;
>     s2=(kky(kx+q)-kkx ky)/n2/n3;
>     s3=(kky kkx-(kkx-q) kky)/n3/n4;
>     s4=(ky (kkx-q)-kx kky)/n4/n1;
>
>     (
>             (c1 c1 c3 c3/q- c1 c2 c3
> c4/nn)/(q^2+kx*q-kkx*q-aa(n1+n2+n3+n4))+
>
>               (s1 s1 c3 c3/q+ s1 c2 c3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1+n2+n3+n4))+
>               (s1 s1 c3 c3/q+s1 s2 c3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1-n2+n3+n4))+
>               (c1 c1 s3 s3/q+ c1 s2 s3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1+n2-n3+n4))+
>               (c1 c1 s3 s3/q+ c1 c2 s3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1+n2+n3-n4))+
>
>               (c1 c1 c3 c3/q+ c1 s2 c3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1-n2+n3+n4))+
>               (s1 s1 s3 s3/q- s1 s2 s3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1+n2-n3+n4))+
>               (s1 s1 s3 s3/q+ s1 c2 s3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1+n2+n3-n4))+
>               (s1 s1 s3 s3/q+ s1 c2 s3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1-n2-n3+n4))+
>               (s1 s1 s3 s3/q- s1 s2 s3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1-n2+n3-n4))+
>               (c1 c1 c3 c3/q+ c1 s2 c3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1+n2-n3-n4))+
>
>               (s1 s1 c3 c3/q+ s1 c2 c3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(+n1-n2-n3-n4))+
>               (s1 s1 c3 c3/q+ s1 s2 c3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1+n2-n3-n4))+
>               (c1 c1 s3 s3/q+ c1 s2 s3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1-n2+n3-n4))+
>               (c1 c1 s3 s3/q+ c1 c2 s3 s4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1-n2-n3+n4))+
>
>               (c1 c1 c3 c3/q- c1 c2 c3 c4/nn)/(q^2+kx*q-kkx*q-
>                     aa(-n1-n2-n3-n4))
>
>             )/4/Pi^2-
>      
>       (4/q -  2/nn)/(q^2 + kx*q - kkx*q)/4/Pi^2
>    
>     ]


  • Prev by Date: Re: Re: Help: ratio of integral of f(x)^2 to square of integral of f(x)
  • Next by Date: Re: Package writing
  • Previous by thread: Numerical Integration
  • Next by thread: an integral containing BesselJ