an integral containing BesselJ
- To: mathgroup at smc.vnet.net
- Subject: [mg67365] an integral containing BesselJ
- From: dimmechan at yahoo.com
- Date: Tue, 20 Jun 2006 02:14:49 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In Mathematica 5.2 i took the result: In[1]:= \!\(Integrate[\(Log[x]\/\@\(1 + x\^2\)\) BesselJ[0, x], {x, 0, 8}] // Timing\) Out[1]= {46.171 Second,0} which is a special case of: In[2]:= \!\(Integrate[\(Log[a\ x]\/\@\(1 + x\^2\)\) BesselJ[0, x], {x, 0, 8}] // Timing\) Out[2]= \!\({32.18800000000001`\ Second, BesselI[0, 1\/2]\ BesselK[0, 1\/2]\ Log[a]}\) However performing the numerical integration gave the result: In[4]:= \!\(NIntegrate[\(Log[x]\/\@\(1 + x\^2\)\) BesselJ[0, x], {x, 0, 8}, Method \[Rule] Oscillatory] // Timing\) Out[4]= {0.75 Second,-0.997939} I also perfrorm the symbolic integration in Mathematica 4.0 and took a lengthy result, which agrees numerically with the obtained result from the numerical integration: In[1]:= \!\(Integrate[\(Log[a\ x]\/\@\(1 + x\^2\)\) BesselJ[0, x], {x, 0, \[Infinity]}] // Timing\) Out[1]= \!\(\* RowBox[{"{", RowBox[{\(18.594`\ Second\), ",", RowBox[{\(1\/12\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\ \((6\ EulerGamma\^2 - \[Pi]\^2 - 6\ EulerGamma\ Log[4])\)\), "+", \(1\/12\ \((6\ EulerGamma\^2 - \[Pi]\^2 - 6\ EulerGamma\ Log[4] + 12\ BesselI[0, 1\/2]\ BesselK[0, 1\/2]\ Log[a])\)\), "+", RowBox[{\(1\/\(2\ \@\[Pi]\)\), RowBox[{"(", RowBox[{\(Log[4]\), " ", RowBox[{"(", RowBox[{\(1\/2\ \@\[Pi]\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\ Log[4]\), "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14174 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(2\^\(\(-1\) - 2\ K$14174\)\ Gamma[ 1\/2 + K$14174]\ PolyGamma[0, 1\/2 + K$14174]\)\/Gamma[1 + K$14174]\^3\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14174 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(2\^\(\(-1\) - 2\ K$14174\)\ Gamma[ 1\/2 + K$14174]\ PolyGamma[0, 1 + K$14174]\)\/Gamma[1 + K$14174]\^3\)\)}]}], ")"}]}], ")"}]}], "+", FractionBox[ RowBox[{\((\(-2\)\ EulerGamma + Log[4])\), " ", RowBox[{"(", RowBox[{\(EulerGamma\ \@\[Pi]\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\), "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14447 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(4\^\(-K$14447\)\ Gamma[ 1\/2 + K$14447]\ PolyGamma[0, 1 + K$14447]\)\/Gamma[1 + K$14447]\^3\)}]}], ")"}]}], \(2\ \@\[Pi]\)], "+", RowBox[{\(1\/\(3\ \@\[Pi]\)\), RowBox[{"(", RowBox[{\(1\/8\ \[Pi]\^\(5/2\)\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\), "-", \(3\/8\ \@\[Pi]\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\ Log[4]\^2\), "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ Log[16]\ PolyGamma[0, 1\/2 + K$14601]\)\/Gamma[1 + K$14601]\^3\)\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ PolyGamma[0, 1\/2 + \ K$14601]\^2\)\/Gamma[1 + K$14601]\^3\)\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ Log[16]\ PolyGamma[0, 1 + K$14601]\)\/Gamma[1 + K$14601]\^3\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(3\ 2\^\(\(-2\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ PolyGamma[0, 1\/2 + K$14601]\ PolyGamma[0, 1 + K$14601]\)\/Gamma[1 + K$14601]\^3\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ PolyGamma[0, 1 + K$14601]\^2\)\/Gamma[1 \ + K$14601]\^3\)\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ PolyGamma[1, 1\/2 + K$14601]\)\/Gamma[1 + K$14601]\^3\)\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$14601 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(3\ 2\^\(\(-3\) - 2\ K$14601\)\ Gamma[ 1\/2 + K$14601]\ PolyGamma[1, 1 + K$14601]\)\/Gamma[1 + K$14601]\^3\)}]}], ")"}]}], "+", RowBox[{\(1\/\(3\ \@\[Pi]\)\), RowBox[{"(", RowBox[{\(3\/2\ EulerGamma\^2\ \@\[Pi]\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\), "+", \(1\/8\ \[Pi]\^\(5/2\)\ \((\(-1\) + HypergeometricPFQ[{1\/2}, {1, 1}, 1\/4])\)\), "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$15304 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(3\ 4\^\(-K$15304\)\ EulerGamma\ Gamma[ 1\/2 + K$15304]\ PolyGamma[0, 1 + K$15304]\)\/Gamma[1 + K$15304]\^3\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$15304 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(3\ 2\^\(\(-1\) - 2\ K$15304\)\ Gamma[ 1\/2 + K$15304]\ PolyGamma[0, 1 + K$15304]\^2\)\/Gamma[1 + \ K$15304]\^3\)}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", \(K$15304 = 1\), InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(-\(\(3\ 2\^\(\(-2\) - 2\ K$15304\)\ Gamma[ 1\/2 + K$15304]\ PolyGamma[1, 1 + K$15304]\)\/Gamma[1 + K$15304]\^3\)\)}]}], ")"}]}]}]}], "}"}]\) In[2]:= N[%[[2]]] Out[2]= 0.0580341\[InvisibleSpace] + 0.0833333 (-12.6717 + 11.7973 Log[a]) In[3]:= % /. a -> 1 Out[3]= -0.997939 Can anyone help me?