Re: BinomialDistribution
- To: mathgroup at smc.vnet.net
- Subject: [mg65229] Re: [mg65222] BinomialDistribution
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 19 Mar 2006 03:19:06 -0500 (EST)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
It is a precision problem Needs["Statistics`DiscreteDistributions`"]; PDF[BinomialDistribution[101,u],26] 942094086221309585483304*(1 - u)^75*u^26 Use exact numbers Integrate[PDF[BinomialDistribution[101,u],26],{u,0,29/100}] 933048986157861216695450243176853643798144899623811456319450 199150880460283695\ 574163450094078155722758786878856490276554642606783152589583 543443098302366302\ 35282827272057121761207307079176349327104941667/\ 127500000000000000000000000000000000000000000000000000000000 000000000000000000\ 000000000000000000000000000000000000000000000000000000000000 000000000000000000\ 00000000000000000000000000000000000000000000000000 %//N 0.007318031263983225 or use NIntegrate NIntegrate[PDF[BinomialDistribution[101,u],26],{u,0,0.29}] 0.007318031263983235 Bob Hanlon > > From: "Solomon, Joshua" <J.A.Solomon at city.ac.uk> To: mathgroup at smc.vnet.net > Subject: [mg65229] [mg65222] BinomialDistribution > > This makes me feel foolish. > In[1]:=Needs["Statistics`DiscreteDistributions`"] > In[2]:=Plot[PDF[BinomialDistribution[101,u],26],{u,0,0.5},PlotRange->All] > > This gives me a nice, bell-shaped curve, with a minimum of about 0 and a > maximum of about .09. Let's integrate it from 0 to .29. > > In[3]:=Integrate[PDF[BinomialDistribution[101,u],26],{u,0,.29}] > Out[3]=-0.612253 > > How can this be negative? > >