Re: message question
- To: mathgroup at smc.vnet.net
- Subject: [mg70953] Re: [mg70918] message question
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 2 Nov 2006 06:48:56 -0500 (EST)
- Reply-to: hanlonr at cox.net
expr=x^3+2*x^2-1; sols=Solve[expr==0]; And@@Thread[Simplify[expr/.sols]==0] True Bob Hanlon ---- dimitris <dimmechan at yahoo.com> wrote: > Consider the following > > sols = Solve[x^3 + 2*x^2 - 1 == 0] > {{x -> -1}, {x -> (1/2)*(-1 - Sqrt[5])}, {x -> (1/2)*(-1 + Sqrt[5])}} > > Why do they appear the warning messages in the following command? > > x^3 + 2*x^2 - 1 == 0 /. sols > N::meprec: Internal precision limit $MaxExtraPrecision = > 49.99999999999999` \ > reached while evaluating \!\(\(-1\) + 1\/2\ \((\(-1\) - \@5)\)\^2 + > 1\/8\ \(\(\((\(-1\) - \ > \@5)\)\^3\)\(.\)\)\) > N::meprec: Internal precision limit $MaxExtraPrecision = > 49.99999999999999` \ > reached while evaluating \!\(\(-1\) + 1\/2\ \((\(-1\) - \@5)\)\^2 + > 1\/8\ \(\(\((\(-1\) - \ > \@5)\)\^3\)\(.\)\)\) > {True, -1 + (1/2)*(-1 - Sqrt[5])^2 + (1/8)*(-1 - Sqrt[5])^3 == 0, -1 + > (1/2)*(-1 + Sqrt[5])^2 + (1/8)*(-1 + Sqrt[5])^3 == 0} > > which they don't avoid the verification > > FullSimplify[%] > {True,True,True} > > Is it a way to avoid the messages (apart from turn off the message)? > > The following seems not to help. > > Block[{$MaxExtraPrecision = 1000}, x^3 + 2*x^2 - 1 == 0 /. sols] > > Thanks a lot > -- Bob Hanlon hanlonr at cox.net