Re: Factor.....
- To: mathgroup at smc.vnet.net
- Subject: [mg71025] Re: Factor.....
- From: ab_def at prontomail.com
- Date: Mon, 6 Nov 2006 02:52:20 -0500 (EST)
- References: <eicnmq$g3i$1@smc.vnet.net><eieq1b$l7h$1@smc.vnet.net>
Along the same lines, we can define an extended SolveAlways function taking a third argument that specifies which parameters to solve for: mySolveAlways[$Leq_, $Lvar_, $Lpar_ : {}] := Module[ {Leq = $Leq, Lvar = $Lvar, Lpar = $Lpar, ans}, {Leq, Lvar, Lpar} = If[ListQ@ #, #, {#}]& /@ {Leq, Lvar, Lpar}; ans = Solve[!Eliminate[!And @@ Leq, Lvar], Lpar]; Select[ans, FreeQ[#, Alternatives @@ Lvar]&] /; Head@ ans =!= Solve ] In[2]:= (A^2 + a1*A + b1)*(A^2 + a2*A + b2) /. Last@ mySolveAlways[ A^4 + 3 + y^2 == (A^2 + a1*A + b1)*(A^2 + a2*A + b2), A, {a1, b1, a2, b2}] Out[2]= (A^2 - Sqrt[2]*A*(3 + y^2)^(1/4) + Sqrt[3 + y^2])*(A^2 + Sqrt[2]*A*(3 + y^2)^(1/4) + Sqrt[3 + y^2]) Maxim Rytin m.r at inbox.ru dh wrote: > Hi, > > you have to tell Mathematica what form you want. > > Assume e.g. that we want the form (A^2 + a1 A + a0)(A^2 + b1 A + b0). > > Then we expand, equate the coefficients of A and solve for a0,a1,b0,b1: > > r1=CoefficientList[(A^2+A a1+a0)(A^2+b1 A+ b0)//Expand,A] > > r2=CoefficientList[A^4+3+y^2,A] > > Solve[Thread[r1==r2],{a0,a1,b0,b1}] > > this gives several possible expansions. > > > > Daniel > > > > gtsavdar at auth.gr wrote: > > > How can i factor A^4 + 3 + y^2 (A,y reals) for example with > > > Mathematica.....? > > > > > > > > > ( > > > In order to have: > > > (A^2 + SQRT(y^2+3) + A·SQRT(2*SQRT(y^2+3))) · (A^2 + SQRT(y^2+3) - > > > A·SQRT(2*SQRT(y^2+3))) > > > ) > > > > > > ( > > > OR: > > > (y^2 - i·SQRT(A^4+3)) · (y^2 + i·SQRT(A^4+3)) > > > ) > > > > > > > > > Thanks.... > > >
- Follow-Ups:
- Re: Re: Factor.....
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Factor.....
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Factor.....