Assuming non-integer values in Mathematica simplifications
- To: mathgroup at smc.vnet.net
- Subject: [mg71032] [mg71002] Assuming non-integer values in Mathematica simplifications
- From: vladimir <gpwr9k95 at yahoo.com>
- Date: Mon, 6 Nov 2006 02:52:30 -0500 (EST)
I just started using Mathematica. I need to simplify the following expressions assuming that w/Pi is not integer (see below). I used the command Element(w/Pi,Rationals] and Element[w/Pi,Reals], but I still get the answer containing If(w/Pi is Integers ...) in many places, making it difficult to extract the answer for non-integer w/Pi. It seems that the simplification commands in Mathematica do not listen to the assumption statements even when such a statement is given within the simplification command. Does anybody know how to tell Mathematice to stop evaluating the integer cases? Thanks in advance. Here is my expression: FullSimplify[(Sum[1, {k, 0, n - 1}]*Sum[ Cos[w*k]*Sin[w*k], {k, 0, n - 1}]*Sum[Sin[w*k]*x[k], {k, 0, n - 1}] - Sum[1, {k, 0, n - 1}]*Sum[Cos[w*k]*x[ k], {k, 0, n - 1}]*Sum[Sin[w*k]^2, {k, 0, n - 1}] - Sum[Cos[w*k], {k, 0, n - 1}]*Sum[Sin[w*k], {k, 0, n - 1}]*Sum[Sin[w*k]*x[ k], {k, 0, n - 1}] - Sum[Cos[w*k]*Sin[w*k], {k, 0, n - 1}]* Sum[Sin[w*k], {k, 0, n - 1}]*Sum[x[k], {k, 0, n - 1}] + Sum[Cos[w* k], {k, 0, n - 1}]*Sum[x[k], {k, 0, n - 1}]*Sum[Sin[w*k]^2, {k, 0, n - 1}] + Sum[Cos[w* k]*x[k], {k, 0, n - 1}]*Sum[Sin[w*k], {k, 0, n - 1}]^2)/(-2*Sum[Cos[ w*k], {k, 0, n - 1}]*Sum[Sin[w* k], {k, 0, n - 1}]*Sum[Cos[w*k]*Sin[w*k], {k, 0, n - 1}] + Sum[Sin[w*k], {k, 0, n - 1}]^2*Sum[Cos[w*k]^2, {k, 0, n - 1}] + Sum[Cos[w*k]* Sin[w*k], {k, 0, n - 1}]^2*Sum[1, {k, 0, n - 1}] + Sum[ Cos[w*k], {k, 0, n - 1}]^2* Sum[Sin[w*k]^2, {k, 0, n - 1}] - Sum[1, {k, 0, n - 1}]*Sum[Cos[w*k]^2, {k, 0, n - 1}]*Sum[Sin[w*k]^2, {k, 0, n - 1}]), w/Ï? â?? Rationals]