RE: Slow Integrate[] on standard integral
- To: mathgroup at smc.vnet.net
- Subject: [mg71246] RE: [mg71202] Slow Integrate[] on standard integral
- From: "David Park" <djmp at earthlink.net>
- Date: Sat, 11 Nov 2006 03:39:24 -0500 (EST)
integrand = Cos[sp*\[Psi]0] + (1/2)*\[Epsilon]*\[Psi]1im* Cos[sp*\[Lambda] + t*\[Mu] - sp*\[Psi]0] - (1/2)*\[Epsilon]*\[Psi]1im*Cos[sp*\[Lambda] + t*\[Mu] + sp*\[Psi]0] + (1/2)*\[Epsilon]*\[Psi]1re*Sin[sp*\[Lambda] + t*\[Mu] - sp*\[Psi]0] - (1/2)*\[Epsilon]*\[Psi]1re*Sin[sp*\[Lambda] + t*\[Mu] + sp*\[Psi]0]; Integrate[#, {sp, 0, s}] & /@ integrand Works quickly. David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ From: ben [mailto:benjamin.friedrich at gmail.com] To: mathgroup at smc.vnet.net Dear group I am experiencing extremly slow performance of Integrate[] although the integrand is just a sum of sines and cosines \!\(integrand = Cos[sp\ \[Psi]0] + 1\/2\ \[Epsilon]\ \[Psi]1im\ Cos[ sp\ \[Lambda] + t\ \[Mu] - sp\ \[Psi]0] - 1\/2\ \[Epsilon]\ \[Psi]1im\ Cos[ sp\ \[Lambda] + t\ \[Mu] + sp\ \[Psi]0] + 1\/2\ \[Epsilon]\ \[Psi]1re\ Sin[ sp\ \[Lambda] + t\ \[Mu] - sp\ \[Psi]0] - 1\/2\ \[Epsilon]\ \[Psi]1re\ Sin[ sp\ \[Lambda] + t\ \[Mu] + sp\ \[Psi]0]\) Developer`ClearCache["Symbolic"] (Integrate[integrand, {sp, 0, s}] // Timing)[[1]] Of course I can write my own integrate (* Linearity of Integral *) In[7]:= myint[a_+b_,{x_,x0_,x1_}]:=myint[a,{x,x0,x1}]+myint[b,{x,x0,x1}]; In[8]:= myint[c_ exp_,{x_,x0_,x1_}]:=c myint[exp,{x,x0,x1}]/;FreeQ[c,x]; (* Integration of Trigonemetric Functions *) In[9]:= myint[Sin[a_ x_+ b_:0],{x_,x0_,x1_}]:=-1/a (Cos[a x1+b]-Cos[a x0+b]); In[29]:= myint[Cos[a_ x_+ b_:0],{x_,x0_,x1_}]:=1/a (Sin[a x1+b]-Sin[a x0+b]); In[71]:= Developer`ClearCache["Symbolic"] (myint[integrand,{sp,0,s}]//Timing)[[1]] Out[72]= 0. Second but I doubt this is the way to resolve such matters. How would I have to help Integrate[] to speed things up? Thanks Bem