MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Integrate fails revised

  • To: mathgroup at smc.vnet.net
  • Subject: [mg71429] Integrate fails revised
  • From: "dimitris" <dimmechan at yahoo.com>
  • Date: Sat, 18 Nov 2006 04:41:00 -0500 (EST)

Finally, searching a little more I get the correcr answer as the
following setting confirms

Integrate[Sqrt[z^2 - 1], {z, 1/10 - I, 1/10, 1/10 + I}]
N[%, 30]
NIntegrate[Sqrt[z^2 - 1], {z, 1/10 - I, 1/10, 1/10 + I}, PrecisionGoal
-> 30,
WorkingPrecision -> 40]

(1/200)*((-1 + 10*I)*Sqrt[-199 - 20*I] - 3*I*Sqrt[11] + 100*Log[(1 -
10*I) +
Sqrt[-199 - 20*I]] - 100*Log[1 - 3*I*Sqrt[11]]) + (1/200)*((1 +
10*I)*Sqrt[-199 + 20*I] -
 3*I*Sqrt[11] - 100*Log[(1 + 10*I) + Sqrt[-199 + 20*I]] + 100*Log[1 +
3*I*Sqrt[11]])
0``31.231129192988075 +
0.083058829172512378559041347481340890684486611506`30.15051499783199*I
0``32.99064243078039 +
0.08305882917251237855904134748134089068448661151`31.91002823562431*I
 
All Hail Mathematica!
 
Regards
Dimitris Anagnostou


  • Prev by Date: question about options
  • Next by Date: RE: mathematica & fortran ??
  • Previous by thread: question about options
  • Next by thread: verify the result of indefinite integration