Numerical Integration
- To: mathgroup at smc.vnet.net
- Subject: [mg71471] Numerical Integration
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Mon, 20 Nov 2006 02:43:53 -0500 (EST)
Dear All, I have one question about the numerical integration of one function. $VersionNumber 5.2 Firstly, consider the following two functions f[x_] := Tan[Cos[x]*Exp[-x/10]] g[x_] := Tan[BesselJ[0, x]*Exp[-x/30]] Plot[{f[x], g[x]}, {x, 0, 30}, PlotPoints -> 100, Axes -> None, Frame -> {True, True, False, False}, PlotStyle -> {Red, Blue}] MapThread[{#1, Limit[{f[x], h[x]}, x -> #1, Direction -> #2]} & , {{0, Infinity}, {-1, 1}}] {{0, {Tan[1], Tan[1]}}, {Infinity, {0, 0}}} Here are numerical estimations of their integral over {0,Infinity} Timing[NIntegrate[f[x], {x, 0, Infinity}, MaxRecursion -> 16, PrecisionGoal -> 20, WorkingPrecision -> 40, SingularityDepth -> 1000]] {0.6090000000000089*Second, 0.23162115314242937349322778892580847913`20.06942527752895} Timing[NIntegrate[g[x], {x, 0, Infinity}, MaxRecursion -> 16, PrecisionGoal -> 20, WorkingPrecision -> 40, SingularityDepth -> 1000]] {4.891000000000002*Second, 1.42946176273365811506679399034735564921`20.05898967415425} Now consider the following function h[x_] := Tan[BesselJ[0, x]] Plot[h[x], {x, 0, 40}, PlotPoints -> 100, Axes -> None, Frame -> {True, True, False, False}, PlotStyle -> AbsoluteThickness[2]] Limit[h[x], x -> Infinity] 0 I try hard to find any proper settings for getting a numerical estimation of its integral over {0,Infinity} but I can't succeed. Any help will be greatly appreciate. Dimitris