Re: sum of integrals over patial intervals != integral
- To: mathgroup at smc.vnet.net
- Subject: [mg71778] Re: sum of integrals over patial intervals != integral
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 29 Nov 2006 02:56:08 -0500 (EST)
- References: <ekh5hc$rn5$1@smc.vnet.net>
In[4]:= $Version Out[4]= "5.2 for Microsoft Windows (June 20, 2005)" In[2]:= f[x_] := Log[Sin[x]^2]*Tan[x]; In[3]:= Integrate[f[x], {x, 0, Pi}] Integrate::"idiv" : "Integral of \ \!\(\(\(Log[\(\(\(Sin[x]\)\^2\)\)]\)\)\\ \(\(Tan[x]\)\)\) does not converge \ on \!\({x, 0, \ ð}\). \!\(\*ButtonBox[\"More...\", ButtonStyle->\"RefGuideLinkText\", \ ButtonFrame->None, ButtonData:>\"Integrate::idiv\"]\)" Out[3]= Integrate[Log[Sin[x]^2]*Tan[x], {x, 0, Pi}] But In[5]:= Integrate[f[x], {x, 0, Pi/2, Pi}] Out[5]= 0 In[9]:= Integrate[Log[Sin[x]^2]*Tan[x], {x, 0, Pi}, GenerateConditions -> False] Out[9]= 0 Ï/Ç Bob Hanlon Ýãñáøå: > Works in my version: > > $Version > > 5.2 for Mac OS X (June 20, 2005) > > f[x_]:=Log[Sin[x]^2]Tan[x]; > > Integrate[f[x],{x,0,Pi}] > > 0 > > > Bob Hanlon > > ---- Peter Pein <petsie at dordos.net> wrote: > > Dear group, > > > > I wanted Mathematica to show, that for f[x_]:=Log[Sin[x]^2]Tan[x], > > Integrate[f[x],{x,0,Pi}]==0, because f[x]+f[Pi-x]==0. > > > > Mathematica says Integrate[f[x],{x,0,Pi}] does not converge, but > > Integrate[f[x],{x,0,Pi/2}] and Integrate[f[x],{x,Pi/2,Pi}] evaluate to > > -Pi^2/12 resp. P^2/12 and the sum is zero. The more general integral > > Integrate[f[x],{x,0,z},Assumptions->Pi/2<z<=Pi] evaluates explicitly (?). > > > > What did I do wrong? > > http://people.freenet.de/Peter_Berlin/Mathe/komisch.nb > > > > TIA, > > Peter > >