Re: sum of integrals over patial intervals != integral
- To: mathgroup at smc.vnet.net
- Subject: [mg71822] Re: sum of integrals over patial intervals != integral
- From: Peter Pein <petsie at dordos.net>
- Date: Thu, 30 Nov 2006 06:05:23 -0500 (EST)
- References: <ekh5hc$rn5$1@smc.vnet.net> <ekjet2$ccj$1@smc.vnet.net>
dimitris schrieb: > Also > > In[1]:= > $Version > Out[1]= > "4.0 for Microsoft Windows (April 21, 1999)" > > In[5]:= > f[x_] := Log[Sin[x]^2]*Tan[x]; > > In[20]:= > Off[$MaxExtraPrecision::meprec] > > In[21]:= > Integrate[f[x], {x, 0, Pi}] > N[%, 40] > Out[21]= > Pi^2/3 + 1/2*(-3*Log[2]^2 - Log[4]^2 + Log[2 - Sqrt[2]]^2 + > Log[16]*Log[2 + Sqrt[2]] - Log[2 + Sqrt[2]]^2 - > 4*PolyLog[2, -(1/Sqrt[2])] - 4*PolyLog[2, 1/Sqrt[2]] + 4*PolyLog[2, > 1 - 1/Sqrt[2]] - 2*PolyLog[2, 1/4*(2 - Sqrt[2])] - > 4*PolyLog[2, 2/(2 + Sqrt[2])] - 2*PolyLog[2, 1/4*(2 + Sqrt[2])]) > Out[22]= > -9.8933845188332`0.3443*^-92 > > Regards > Dimitris > > Î?/Î? Bob Hanlon ÎγÏ?αÏ?ε: >> Works in my version: >> >> $Version >> >> 5.2 for Mac OS X (June 20, 2005) >> >> f[x_]:=Log[Sin[x]^2]Tan[x]; >> >> Integrate[f[x],{x,0,Pi}] >> >> 0 >> >> >> Bob Hanlon >> >> ---- Peter Pein <petsie at dordos.net> wrote: >>> Dear group, >>> >>> I wanted Mathematica to show, that for f[x_]:=Log[Sin[x]^2]Tan[x], >>> Integrate[f[x],{x,0,Pi}]==0, because f[x]+f[Pi-x]==0. >>> >>> Mathematica says Integrate[f[x],{x,0,Pi}] does not converge, but >>> Integrate[f[x],{x,0,Pi/2}] and Integrate[f[x],{x,Pi/2,Pi}] evaluate to >>> -Pi^2/12 resp. P^2/12 and the sum is zero. The more general integral >>> Integrate[f[x],{x,0,z},Assumptions->Pi/2<z<=Pi] evaluates explicitly (?). >>> >>> What did I do wrong? >>> http://people.freenet.de/Peter_Berlin/Mathe/komisch.nb >>> >>> TIA, >>> Peter >>> > Dear Dimitris, dear Bob, Thank you very much for your answers! I would like to know, whether the development version finds the simple substitution u==Sin[x]^2: f[x_] = Log[Sin[x]^2]*Tan[x]; (* u==Sin[x]^2 *) new = f[x]*Dt[x] /. x -> ArcSin[{-1, 1}*Sqrt[u]] /. Dt[u] -> 1 --> {Log[u]/(2*(1 - u)), Log[u]/(2*(1 - u)} F[z_] = Apart[Integrate[new[[1]], {u, 0, Sin[z]^2}, Assumptions -> 0 < z < Pi]] --> -Pi^2/12 + 1/2*PolyLog[2, Cos[z]^2] Simplify[F'[x] == f[x]] --> True Thanks again, Peter