BesselJ integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg70077] BesselJ integrals
- From: dimmechan at yahoo.com
- Date: Mon, 2 Oct 2006 00:33:56 -0400 (EDT)
Hello to all. Mathematica evaluates correctly the following integrals Assuming[p>0&&r>0,Integrate[Exp[-I*p*r*Cos[u]]*{Cos[u],Sin[u]},{u,0,2Pi}]] {(-2*I)*Pi*BesselJ[1, p*r], 0} Assuming[p>0&&r>0,Integrate[ Exp[-I*p*r*Cos[u]]*{Cos[2*u],Sin[2*u]},{u,0,2Pi}]] {-2*Pi*BesselJ[2, p*r], 0} Assuming[p>0&&r>0,Integrate[ Exp[-I*p*r*Cos[u]]*{Cos[3*u],Sin[3*u]},{u,0,2Pi}]] {(2*I)*Pi*BesselJ[3, p*r], 0} Can someone explain me why however fails to evaluate the general case (which is equal to {2Pi*(-I)^m*BesselJ[m,p*r],0}, cf. e.g. McLachlan 1955)? Assuming[p>0&&r>0&m>0,Integrate[ Exp[-I*p*r*Cos[u]]*{Cos[m*u],Sin[m*u]},{u,0,2Pi}]] {Integrate[Cos[m*u]/E^(I*p*r*Cos[u]), {u, 0, 2*Pi}], Integrate[Sin[m*u]/E^(I*p*r*Cos[u]), {u, 0, 2*Pi}]} Also Mathematica fails to evaluate the following integrals (even for given m) Assuming[p>0&&r>0&m>0,Integrate[Exp[-I*p*r*Cos[u-v]]*{Cos[m*u],Sin[m*u]},{u,0,2Pi}]] {Integrate[Cos[m*u]/E^(I*p*r*Cos[u - v]), {u, 0, 2*Pi}], Integrate[Sin[m*u]/E^(I*p*r*Cos[u - v]), {u, 0, 2*Pi}]} which (cf. e.g. McLachlan 1955) are equal to {2Pi*(-I)^m*BesselJ[m,p*r]*Cos[v],2Pi*(-I)^m*BesselJ[m,p*r]*Sin[v]}) and as well the integral Assuming[p>0&&r>0,Integrate[ Exp[-I*p*r*Cos[u-v]],{u,0,2Pi}]] Integrate[E^((-I)*p*r*Cos[u - v]), {u, 0, 2*Pi}] which is equal to 2Pi*BesselJ[0,p*r] Can somehow "help" Mathematica to evaluate these integrals (e.g last integral is evaluated by hand considering that the integral of a periodic function is the same regrardless where the integration begins)? Any help will be greatly appreciate. Thanks.