Re: FoourierTransform of a function defined in sections
- To: mathgroup at smc.vnet.net
- Subject: [mg70200] Re: FoourierTransform of a function defined in sections
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 7 Oct 2006 07:07:39 -0400 (EDT)
- References: <eg4soa$ffu$1@smc.vnet.net>
Eckhard Schlemm schrieb: > Hello, > > I want Mathematica to calculate the FourierTransform of a function which is > defined by Sin[x]^2 for Abs[x]<PI and zero else. I tried and defined the > function g as follows: > > g[x_]:=If[Abs[x]>PI,0,Sin[x]^2]; > > That works fine. But if I have mathematica try to determine the > FourierTransform by > > FourierTransform[g[x],x,p] > > I always get the error that the recursion limit and the iteration limit were > exceeded... > > what am I'm doing wrong? > > Any help is appreciated > > thanks > > Eckhard > > -- > _________________________ > Ludwig Schlemm > Tel: +49 (0) 160 91617114 > LudwigSchlemm at hotmail.com > > Hi Ludwig, 1.) Don't use PI as a variable; it is too similar to the name of the constant Pi (3.141...). 2.) Mathematica 'prefers' UnitStep or Piecewise (I changed PI to z): In[1]:= g[x_] := Sin[x]^2*UnitStep[x + z, z - x] In[2]:= tmp = (FullSimplify[#1, Im[p] == 0 && z > 0] & ) /@ Factor[FourierTransform[g[x], x, p]] Out[2]= (Sqrt[2/Pi]*(p*Cos[p*z]*Sin[2*z] + (-2 + p^2*Sin[z]^2)*Sin[p*z]))/ ((-2 + p)*p*(2 + p)) This has got singularities for p in {-2,0,2} In[3]:= lim = (Limit[tmp, p -> #1] & ) /@ {-2, 0, 2} Out[3]= {-((4*z - 4*Sin[2*z] + Sin[4*z])/(8*Sqrt[2*Pi])), (z - Cos[z]*Sin[z])/Sqrt[2*Pi], -((4*z - 4*Sin[2*z] + Sin[4*z])/(8*Sqrt[2*Pi]))} In[4]:= fg[p_] = PiecewiseExpand[ Piecewise[ Apply[ {#1, p == #2} & , Transpose[{lim, {-2, 0, 2}}], {1}], tmp]]; You get the same with In[1]:= g[x_] := Piecewise[{{Sin[x]^2, -z <= x <= z}}] etc. Hope this helps, Peter