Re: FoourierTransform of a function defined in sections
- To: mathgroup at smc.vnet.net
- Subject: [mg70187] Re: FoourierTransform of a function defined in sections
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sat, 7 Oct 2006 07:06:56 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <eg4soa$ffu$1@smc.vnet.net>
Eckhard Schlemm wrote: > Hello, > > I want Mathematica to calculate the FourierTransform of a function which is > defined by Sin[x]^2 for Abs[x]<PI and zero else. I tried and defined the > function g as follows: > > g[x_]:=If[Abs[x]>PI,0,Sin[x]^2]; > > That works fine. But if I have mathematica try to determine the > FourierTransform by > > FourierTransform[g[x],x,p] > > I always get the error that the recursion limit and the iteration limit were > exceeded... > > what am I'm doing wrong? > > Any help is appreciated Hi Eckhard, You must have some other conflicting definitions or its a platform/version specific problem. With a fresh Mathematica 5.2 kernel on Windows XP SP2, I had not problem running the code, see below. (Note that I have added two alternative definitions for g, that might help in your case.) In[1]:= g1[x_] := If[Abs[x] < PI, Sin[x]^2, 0]; fg1 = FourierTransform[g1[x], x, p] Out[2]= -((1/(p*(-4 + p^2)))*(Sqrt[2/Pi]*(p*Cos[p*PI]*Sin[2*PI] + (-2 + p^2*Sin[PI]^2)*Sin[p*PI])*(-1 + UnitStep[-PI]))) In[3]:= g2[x_] := Piecewise[{{Sin[x]^2, Abs[x] < PI}}, 0] fg2 = FourierTransform[g2[x], x, p] Out[4]= -((1/(p*(-4 + p^2)))*(Sqrt[2/Pi]*(p*Cos[p*PI]*Sin[2*PI] + (-2 + p^2*Sin[PI]^2)*Sin[p*PI])*(-1 + UnitStep[-PI]))) In[5]:= g3[x_ /; Abs[x] < PI] := Sin[x]^2 g3[x_] := 0 fg3 = FourierTransform[g2[x], x, p] Out[7]= -((1/(p*(-4 + p^2)))*(Sqrt[2/Pi]*(p*Cos[p*PI]*Sin[2*PI] + (-2 + p^2*Sin[PI]^2)*Sin[p*PI])*(-1 + UnitStep[-PI]))) In[8]:= fg1 == fg2 == fg3 Out[8]= True In[9]:= $Version Out[9]= "5.2 for Microsoft Windows (June 20, 2005)" Regards, Jean-Marc