Re: Troubles with Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg70236] Re: Troubles with Integrate
- From: dimmechan at yahoo.com
- Date: Sun, 8 Oct 2006 02:05:02 -0400 (EDT)
- References: <eg84hk$nir$1@smc.vnet.net>
Hello Roman. $VersionNumber 5.2 psi = -(((Sin[(1/3)*Pi*(t - 5/4)]*Cos[Pi*(t - 5/4)])/(t - 5/4) + (Sin[Pi*(t + 1/4)]*Cos[Pi*(t + 1/4)])/(t + 1/4))/Pi) + ((Sin[(2/3)*Pi*(t - 7/8)]*Sin[2*Pi*(t - 7/8)])/(t - 7/8) - (Sin[(2/3)*Pi*(t - 1/8)]*Sin[2*Pi*(t - 1/8)])/(t - 1/8))/Pi; First of all as regards the integral of psi over {t,-infinitty,infinity} I think Mathematica 5.2 is right. Integrate[psi, t] (1/Pi)*((1/2)*CosIntegral[(1/6)*Pi*(-7 + 8*t)] - (1/2)*CosIntegral[(1/3)*Pi*(-7 + 8*t)] - (1/2)*CosIntegral[(1/6)*(Pi - 8*Pi*t)] + (1/2)*CosIntegral[(1/3)*(Pi - 8*Pi*t)] - (1/2)*SinIntegral[(1/6)*Pi*(5 - 4*t)] + (1/2)*SinIntegral[(1/3)*Pi*(5 - 4*t)] - (1/2)*SinIntegral[Pi/2 + 2*Pi*t]) Timing[Integrate[psi, {t, -Infinity, Infinity}]] {36.437999999999995*Second, -(1/2)} Timing[NIntegrate[psi3, {t, -Infinity, Infinity}, Method -> DoubleExponential, MaxRecursion -> 16]] NIntegrate::slwcon :(...) NIntegrate::ncvi :(...) {33.827999999999975*Second, -0.5089996793160453} Second I din't get the error message you mention to your post (no matter how I tried!). I hope someone will help you to evaluate the integral of psi^2 over {t, -Infinity, Infinity}. I failed to evalute it even I try two or three approaches. I believe you cannot obtain a closed form result, but I wish I do mistake. Here is a numerical approxiamation: Timing[NIntegrate[psi^2, {t, -Infinity, Infinity}, MaxRecursion -> 20]] (messages are not displayed) {17.046999999999997*Second, 0.9331917391109911}