Re: Troubles with Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg70260] Re: Troubles with Integrate
- From: "astanoff" <astanoff at gmail.com>
- Date: Tue, 10 Oct 2006 06:12:14 -0400 (EDT)
- References: <eg84hk$nir$1@smc.vnet.net>
Hi, The exact value is 4/3 - (8*Sqrt[2])/(9*Pi), which you can get this way (with appropriate translations) : In[1]:=psi:= (-Pi^(-1))*((Sin[Pi*((t - 5/4)/3)]/(t - 5/4))*Cos[Pi*(t - 5/4)] + (Sin[Pi*(t + 1/4)]/(t + 1/4))*Cos[Pi*(t + 1/4)]) + (1/Pi)*((Sin[2*Pi*((t - 7/8)/3)]/(t - 7/8))*Sin[2*Pi*(t - 7/8)] - (Sin[2*Pi*((t - 1/8)/3)]/(t - 1/8))*Sin[2*Pi*(t - 1/8)]); In[2]:=ex=List@@(psi^2//Expand) ... look at each term to translate accordingly In[3]:=i[1]=Integrate[ex[[1]]/.t\[Rule]t+5/4,{t,-\[Infinity],\[Infinity]}] Out[3]=\!\(1\/6\) In[4]:=i[2]=Integrate[ex[[2]]/.t\[Rule]t+5/4,{t,-\[Infinity],\[Infinity]}] Out[4]=0 In[5]:=i[3]=Integrate[ex[[3]]/.t\[Rule]t+7/8,{t,-\[Infinity],\[Infinity]}] Out[5]=\!\(1\/3\) In[6]:=i[4]=Integrate[ex[[4]]/.t\[Rule]t+5/4,{t,-\[Infinity],\[Infinity]}] Out[6]=0 In[7]:=i[5]=Integrate[ex[[5]]/.t\[Rule]t+7/8,{t,-\[Infinity],\[Infinity]}] Out[7]=0 In[8]:=i[6]=Integrate[ex[[6]]/.t\[Rule]t+1/8,{t,-\[Infinity],\[Infinity]}] Out[8]=\!\(1\/3\) In[9]:=i[7]=Integrate[ex[[7]]/.t\[Rule]t+5/4,{t,-\[Infinity],\[Infinity]}] Out[9]=0 In[10]:=i[8]=Integrate[ex[[8]]/.t\[Rule]t+7/8,{t,-\[Infinity],\[Infinity]}] Out[10]=-((2*Sqrt[2])/(9*Pi)) In[11]:=i[9]=Integrate[ex[[9]]/.t\[Rule]t+1/8,{t,-\[Infinity],\[Infinity]}] Out[11]=-((2*Sqrt[2])/(3*Pi)) In[12]:=i[10]=Integrate[ex[[10]]/.t\[Rule]t-1/4,{t,-\[Infinity],\[Infinity]}] Out[12]=\!\(1\/2\) In[13]:=Sum[i[k],{k,1,10}] Out[13]=4/3 - (8*Sqrt[2])/(9*Pi) In[14]:=%//N Out[14]=0.933193 hth V.Astanoff