[Date Index]
[Thread Index]
[Author Index]
Re: recursive blues :(
*To*: mathgroup at smc.vnet.net
*Subject*: [mg70315] Re: recursive blues :(
*From*: dimmechan at yahoo.com
*Date*: Thu, 12 Oct 2006 05:38:13 -0400 (EDT)
*References*: <egi1qo$jaa$1@smc.vnet.net>
Your syntax is completely wrong.
Try
Clear[f]
f[x_] := f[x + 2] /; x < -2^(-1)
f[x_] := f[x - 2] /; x > 3/2
f[x_] := 2 /; -2^(-1) < x < 1/2
f[x_] := 1 /; 1/2 < x < 3/2
Then execute the following command to get a plot
Plot[f[x], {x, -3 3}, Frame -> {True, True, False, False}, Axes ->
False,
ImageSize -> 400]
(*plot to be displayed*)
If you want not to displayed the undesirable vertical lines connecting
the discontinuities you can use the following one-liner which modifies
slightly the Plot function.
(see also
http://groups.google.gr/group/comp.soft-sys.math.mathematica/browse_thread/thread/ece0e44f7b2f8600/df67129bb8472a9f?lnk=gst&q=plotDisc&rnum=1#df67129bb8472a9f
)
plotDisc[g_, x_, a_, b_, c___, {opts___}] := Show[(Plot[g, {x, #1[[1]],
#1[[2]]},
opts, DisplayFunction -> Identity] & ) /@ Partition[{a, c, b}, 2, 1],
DisplayFunction -> $DisplayFunction]
Then
plotDisc[f[x], x, -3, 3, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, {Frame ->
True, Axes -> False, PlotStyle -> Red}]
(*plot to be displayed*)
Let see one other way of defining your f function.
If you have Mathematica version 5.1 and newer you can use the following
definition
Clear[f]
f[x_] := Piecewise[{{f[x + 2], x < -2^(-1)}, {f[x - 2], x > 3/2}, {2,
-2^(-1) < x < 1/2},
{1, 1/2 < x < 3/2}}]
Plot[f[x], {x, -3, 3}]
(*plot to be displayed*)
(my plotDisc cannot be applied here...)
Regards
Dimitris
Prev by Date:
**Re: Correlating binary variables**
Next by Date:
**Re: Re: Copy input and User Defined Variables**
Previous by thread:
**Re: recursive blues :(**
Next by thread:
**webMathematica GUI with Flash Pro?**
| |