Linear bonding model using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg70318] Linear bonding model using Mathematica
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Thu, 12 Oct 2006 05:38:26 -0400 (EDT)
The simplest model is the entirely linear one. These bondings are like straight chain hydocarbons ( without the hydrogens). An group Dynkin diagrams as graphs give linear molecule bonding models: ( permutation type groups) 2by2 {{0, 1}, {1, 0}} 3by3 {{0, 1, 0}, {1, 0, 1}, {0, 1, 0}} 4by4 {{0, 1, 0, 0}, {1, 0, 1, 0}, {0, 1, 0, 1}, {0, 0, 1, 0}} Characteristic Polynomials: x^2-1 -x^3+2*x x^4-3*x+1 Triangular sequence: {1} (added to complete triangle) {0, -1}, {-1, 0, 1}, {0, 2, 0, -1}, {1, 0, -3, 0, 1}, {0, -3, 0, 4, 0, -1}, {-1, 0, 6, 0, -5, 0, 1}, {0, 4, 0, -10, 0, 6, 0, -1}, {1, 0, -10, 0, 15, 0, -7, 0, 1}, {0, -5, 0, 20, 0, -21, 0, 8, 0, -1}, {-1, 0, 15, 0,-35, 0, 28, 0, -9, 0, 1} 1,0, -1, -1, 0, 1, 0, 2, 0, -1, 1, 0, -3, 0, 1, 0, -3, 0, 4, 0, -1, -1, 0, 6, 0, -5, 0, 1, 0, 4, 0, -10, 0, 6, 0, -1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, -5, 0, 20, 0, -21, 0, 8, 0, -1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, 6, 0, -35, 0, 56, 0, -36, 0, 10, 0, -1, 1, 0, -21, 0, 70, 0, -84, 0, 45, 0, -11, 0, 1, 0, -7, 0, 56, 0, -126, 0, 120, 0, -55, 0, 12, 0, -1, -1, 0, 28, 0, -126, 0, 210, 0, -165, 0, 66, 0, -13, 0, 1, 0, 8, 0, -84, 0, 252, 0, -330, 0, 220, 0, -78, 0, 14, 0, -1, 1, 0, -36, 0, 210, 0, -462, 0, 495, 0, -286, 0, 91, 0, -15, 0, 1, 0, -9, 0, 120, 0, -462, 0, 792, 0, -715, 0, 364, 0, -105, 0, 16, 0, -1, -1, 0, 45, 0, -330, 0, 924, 0, -1287, 0, 1001, 0, -455, 0, 120, 0, -17, 0, 1, 0, 10, 0, -165, 0, 792, 0, -1716, 0, 2002, 0, -1365, 0, 560, 0, -136, 0, 18, 0, -1, 1, 0, -55, 0, 495, 0, -1716, 0, 3003, 0, -3003, 0, 1820, 0, -680, 0, 153, 0, -19, 0, 1 In triangular sequence terms they are like Hermite/ vibrational type polynomials with alternate zeros in the polynomials. Mathematica code: An[d_] := Table[If[ n == m + 1 || n == m - 1, 1, 0], {n, 1, d}, {m, 1, d}] Table[An[d], {d, 2, 20}] Table[CharacteristicPolynomial[An[d], x], {d, 2, 20}] Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}] Flatten[%] You can cut and paste that into OEIS. It gives A049310 <http://www.research.att.com/%7Enjas/sequences/A049310> > Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials > (exponents in increasing order). It appears Chebyshev's also alternate in power. They are orthogonal polynomials produced by a simple matrix model. Roger Bagula