Re: Convert expression to polynomial
- To: mathgroup at smc.vnet.net
- Subject: [mg70440] Re: Convert expression to polynomial
- From: dimmechan at yahoo.com
- Date: Mon, 16 Oct 2006 02:35:42 -0400 (EDT)
- References: <egsd96$cj7$1@smc.vnet.net>
x = 1 + (-t + t^2)^(-1) + 1/((-t + t^2)^2*(-t + t^4)) + 1/((-t + t^2)^4*(-t + t^4)^2*(-t + t^8)); fun = FullSimplify[Together[x]] (1 + (-1 + t)^4*t^4*(1 + t + t^2)*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6)*(1 + (-1 + t)^2*t^2*(1 + (-1 + t)*t)*(1 + t + t^2)))/ ((-1 + t)^7*t^7*(1 + t + t^2)^2*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6)) PolynomialQuotient[Numerator[fun], Denominator[fun], t] 1 (*Check*) PolynomialRemainder[Numerator[fun], Denominator[fun], t] 1 + t^4 - 2*t^5 + 2*t^6 - 4*t^7 + 5*t^8 - 4*t^9 + 6*t^10 - 7*t^11 + 5*t^12 - 5*t^13 + 7*t^14 - 6*t^15 + 4*t^16 - 6*t^17 + 6*t^18 - 3*t^19 + 3*t^20 - 3*t^21 + t^22 1*Denominator[fun] + % 1 + t^4 - 2*t^5 + 2*t^6 - 4*t^7 + 5*t^8 - 4*t^9 + 6*t^10 - 7*t^11 + 5*t^12 - 5*t^13 + 7*t^14 - 6*t^15 + 4*t^16 - 6*t^17 + 6*t^18 - 3*t^19 + 3*t^20 - 3*t^21 + t^22 + (-1 + t)^7*t^7*(1 + t + t^2)^2*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6) FullSimplify[%] == Numerator[fun] True Regards Dimitris