Re: a fault in the Factor[] function for polynomials?
- To: mathgroup at smc.vnet.net
- Subject: [mg70413] Re: [mg70395] a fault in the Factor[] function for polynomials?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 16 Oct 2006 02:33:58 -0400 (EDT)
- Reply-to: hanlonr at cox.net
They are equivalent representations. As stated in the documentation, Factor factors the polynomial over the integers. poly1=(x^4 + 2*Sqrt[3]x^2 - 1)(x^4 - 2*Sqrt[3]x^2 - 1); poly2=Expand[poly1] x^8 - 14*x^4 + 1 poly3=Factor[poly2] (x^4 - 4*x^2 + 1)*(x^4 + 4*x^2 + 1) You can change the default behavior: poly4=Factor[poly2,Extension->Sqrt[3]] (-x^2 + Sqrt[3] - 2)*(-x^2 + Sqrt[3] + 2)*(x^2 + Sqrt[3] - 2)*(x^2 + Sqrt[3] + 2) poly5=(poly4/.Times[a_,b_,c_,d_]:> Times[Expand[a*b],Expand[c*d]]) (x^4 - 2*Sqrt[3]*x^2 - 1)*(x^4 + 2*Sqrt[3]*x^2 - 1) poly1===poly5 True poly1==poly2==poly3==poly4==poly5//Simplify True Equal@@(Solve[#==0,x]& /@ {poly1,poly2,poly3,poly4,poly5}) True Bob Hanlon ---- Roger Bagula <rlbagula at sbcglobal.net> wrote: > Expand[(x^4 + 2*Sqrt[3]x^2 - 1)(x^4 - 2*Sqrt[3]x^2 - 1)] > 1 - 14x^4 + x^8 > Factor[%] > (1 - 4x^2 + x^4)(1 + 4x^2 + x^4) > -- Bob Hanlon hanlonr at cox.net